
Automatic Optimization of 3D Mesh Data for
Real-Time Online Presentation

vom Fachbereich Informatik
der Technischen Universität Darmstadt

genehmigte

DISSERTATION

zur Erlangung des akademischen Grades eines
Doktor-Ingenieurs (Dr.-Ing.)

von

Dipl.-Inform. Max Alfons Limper
geboren in Aachen, Deutschland

Referenten der Arbeit: Prof. Dr. techn. Dieter W. Fellner
Technische Universität Darmstadt

Prof. Dr. Marc Alexa
Technische Universität Berlin

Tag der Einreichung: 11.04.2018
Tag der mündlichen Prüfung: 05.06.2018

Darmstädter Dissertation
D 17

This version is published under the

Creative Commons Attribution-NoDerivatives 4.0 International Public License (CC BY-ND 4.0).

https://creativecommons.org/licenses/by-nd/4.0/

2

https://creativecommons.org/licenses/by-nd/4.0/

Abstract
Interactive 3D experiences are becoming increasingly available as a part of our every-day life. Examples are
ranging from common video games to virtual reality experiences and augmented reality apps on smart phones.
A rapidly growing area are interactive 3D applications running inside common Web browsers, enabling to serve
millions of users worldwide using solely standard Web technology. However, while Web-based 3D presentation
technology is getting more and more advanced, a crucial problem that remains is the optimization of 3D mesh
data, such as highly detailed 3D scans, for efficient transmission and online presentation. In this context, the
need for dedicated 3D experts, being able to work with various specialized tools, significantly limits the scalabil-
ity of 3D optimization workflows in many important areas, such as Web-based 3D retail or online presentation
of cultural heritage. Moreover, since Web-based 3D experiences are nowadays ubiquitous, an optimal delivery
format must work well on a wide range of possible client devices, including tablet PCs and smart phones, while
still offering acceptable compression rates and progressive streaming. Automatically turning high-resolution 3D
meshes into compact 3D representations for online presentations, using an efficient standard format for compres-
sion and transmission, is therefore an important key challenge, which remained largely unsolved so far.

Within this thesis, a fully-automated pipeline for appearance-preserving optimization of 3D mesh data is pre-
sented, enabling direct conversion of high-resolution 3D meshes to an optimized format for real-time online
presentation. The first part of this thesis discusses 3D mesh processing algorithms for fully-automatic opti-
mization of 3D mesh data, including mesh simplification and texture mapping. In this context, a novel saliency
detection method for mesh simplification is presented, as well as a new method for automatic overlap removal
in parameterizations using cuts with minimum length and, finally, a method to compact texture atlases using
a cut-and-repack strategy. The second part of the thesis deals with the design of an optimized format for 3D
mesh data on the Web. It covers various relevant aspects, such as efficient encoding of mesh geometry and mesh
topology, a physically-based format for material data, and progressive streaming of textured triangle meshes.
The contributions made in this context during the creation of this thesis had notable impact on the design of
the current standard format for 3D mesh data on the Web, glTF 2.0, which is nowadays supported by the vast
majority of online 3D viewers.

i

ii

Zusammenfassung
Interaktive 3D-Anwendungen werden mehr und mehr Teil unseres Alltags. Beispiele reichen von gewöhnlichen
Videospielen über virtuelle Realitäten bis hin zu Anwendungen der erweiterten Realität mit Hilfe von Smart-
phones. Ein rapide wachsendes Anwendungsfeld sind interaktive 3D-Webanwendungen, welche in gewöhn-
lichen Webbrowsern laufen und durch die ausschließliche Verwendung von Standard-Webtechnologie unmit-
telbar Millionen von Nutzern weltweit erreichen. Während sich die webbasierte 3D-Präsentationstechnologie
kontinuierlich weiter entwickelt ist allerdings gleichzeitig festzustellen, dass durch die Anforderung nach der
Optimierung von 3D-Netzdaten, wie z.B. von detaillierten 3D-Scans, weiterhin ein entscheidendes Problem
besteht. In diesem Kontext schränkt die Notwendigkeit, auf hochspezialisierte 3D-Experten zurück zu greifen,
welche mit verschiedensten Optimierungswerkzeugen vertraut sind, die Skalierbarkeit von Prozessen in vie-
len wichtigen Bereichen deutlich ein. Dazu zählen beispielsweise 3D-Anwendungen für den Einzelhandel
oder die Online-Präsentation von Kulturerbe. Darüber hinaus ergibt aus der Tatsache, dass webbasierte 3D-
Anwendungen heute überall verfügbar sind, eine weitere Hürde: ein optimales Format zur Datenübertragung
muss auf zahlreichen Endgeräten, wie z.B. auf Tablet-PCs oder Smartphones, gut funktionieren und gleichzeitig
gute Kompressionsraten und die Möglichkeit zur progressiven Übertragung (Streaming) bieten. Die automatische
Konvertierung von hochaufgelösten 3D-Netzdaten in kompakte 3D-Repräsentationen, welche sich zur Online-
Darstellung eignen, unter Verwendung eines effizienten Standardformats zur Kompression und Datenübertra-
gung, stellt daher bislang eine ungelöste Herausforderung dar.

Im Rahmen der vorliegenden Arbeit wird eine vollautomatische Verarbeitungspipeline zur detailerhaltenden Op-
timierung von 3D-Netzdaten vorgestellt, welche die direkte Konvertierung von hochaufgelösten 3D-Netzen in
ein für die Online-Präsentation optimiertes Format ermöglicht. Der erste Teil der Arbeit beschäfigt sich mit
Algorithmen der 3D-Geometrieverarbeitung zur vollautomatischen Optimierung von 3D-Netzdaten, was die bei-
den Bereiche Netzvereinfachung und der Texturierung beinhaltet. In diesem Kontext wird eine neue Methode zur
Bestimmung der lokalen Wichtigkeit (Salienz) im Rahmen der Netzvereinfachung vorgestellt, sowie eine Meth-
ode zum automatischen Beheben der Überlappungen von Parameterisierungen (unter Verwendung von Schnitten
minimaler Länge) und, schließlich, ein neuer Ansatz zur Verdichtung von Texturatlanten, basierend auf wieder-
holten Schneide- und Packoperationen. Der zweite Teil der Arbeit beschäftigt sich mit dem Entwurf eines op-
timierten Formates für 3D-Netzdaten im Web. Dabei werden zahlreiche relevante Aspekte berücksichtigt, wie
die effiziente Kodierung von Netzgeometrie und -topologie, ein physikalisch basiertes Format für Materialdaten,
sowie die progressive Übertragung von texturierten 3D-Netzen. Die Beiträge welche in diesem Kontext durch
die vorliegende Arbeit erbracht wurden hatten einen merklichen Einfluss auf die Gestaltung des aktuellen Stan-
dardformats für 3D-Daten im Web, glTF 2.0, welches von heutzutage verfügbarer Software zur webbasierten
3D-Darstellung mehrheitlich unterstützt wird.

iii

iv

Acknowledgements
Writing this PhD thesis wouldn’t have been possible without the great support that I received from many people
within Fraunhofer IGD, and beyond.

First of all, I would like to thank my supervisor Dieter W. Fellner for donating his time to supervise me as his
PhD student. Despite his many duties, he has always been at hand to provide me with useful feedback and
directions for next steps. This especially happened in a focused environment during our yearly GRIS retreats,
but also during Wintergraph 2015 (where I made my first serious skiing experiences). Furthermore, I am very
grateful for the strong support of Arjan Kuijper. From his first important clues on how to write a good paper to
the final writeup of this thesis, Arjan has always been a very excellent and friendly PhD coach. I am also feeling
very happy and honored to have Marc Alexa as the second examiner of my thesis. During my first year as a
PhD student, he helped us to turn the basic idea of the POP buffer into a real paper. Marc guided me not only
through the writing process and submission period, but he also supported me on-site at the Pacific Graphic 2013
conference in Singapore, where this work was presented. Finally, among the people supervising my work, my
special gratitude is due to Alla Sheffer, who has been hosting me during my time as a visiting student at UBC.
Together with our co-author Nicholas Vining, Alla guided me through a year of hard work that finally led to my
first SIGGRAPH paper. She also helped me a lot to expand my knowledge on mesh parameterization.

My thanks are also due to all my dear colleagues from our VCST department. Even during stressful project
work, the atmosphere on the personal level has always been very positive. This is also due to department head
Johannes Behr, who is not only a great engineer, but, first and foremost, a very likeable person. I especially
enjoyed working with the first VCST client team. The early members, which were Christian Stein, Maik Thöner
and me, were following a hint of my friend Sebastian Wagner (who was also a colleague at that time), contributing
a chapter on our technology to the book WebGL Insights. This nice team effort also led to our first presentation
at the WebGL BOF at SIGGRAPH 2015, and it put us in touch with Patrick Cozzi, the book’s editor, for the first
time. Later, we were joined by Timo Sturm and Miguel Sousa, who are both, beyond any doubt, very passionate
and highly skilled computer graphics developers. The dedication of this great team made working at VCST so
special, and it helped all of us to master stress and pressure resulting from hard feature deadlines.

I would also like to thank all my other colleagues who supported me during my time at IGD. Especially, my
thanks go to the institute’s very own band Rejected Papers - it was always a pleasure to drop by at your rehearsals!
In addition, Michel Krämer also deserves my deep gratitude for his very helpful feedback on the structure and
content of this thesis.

My special thanks are due to Patrick Cozzi. His work on the glTF standard and the way he created a such an
amazing community around it were very inspirational to me, and I feel honored for having had the opportunity
to contribute my part under his guidance, and with his assistance.

Last but not least, I would like to thank all my friends and family for their emotional support during the past few
years. My parents Andreas and Brigitte deserve special thanks for proof-reading my thesis, but also for caring
for me and helping me to recover from sickness just a few weeks before the SIGGRAPH deadline.

Many thanks to all of you!

v

vi

Contents

1. Introduction 1
1.1. Research Question: 3D Mesh Optimization for the Web 5
1.2. Structure of the Thesis . 6
1.3. Contributions . 7

I. Offline: 3D Mesh Processing Algorithms 9

2. Mesh Simplification 11
2.1. Goals & State of the Art . 11
2.2. The LCE Method for Saliency Detection . 17

2.2.1. Local Curvature Entropy (LCE) . 17
2.2.2. Results & Discussion . 19

2.3. Summary . 24

3. Texturing 25
3.1. Goals & State of the Art . 27

3.1.1. Background: Unfolding 3D Surfaces to the Plane 27
3.1.2. Segmentation . 29
3.1.3. Parameterization . 31
3.1.4. Atlas Packing . 34
3.1.5. Texture Baking . 35

3.2. Overlap Removal with Approximately Minimum Cuts 36
3.2.1. Overlap Removal using a Graph Cut Algorithm 36
3.2.2. Chart Welding . 37
3.2.3. Protecting Important Regions . 38
3.2.4. Results & Discussion . 39

3.3. BoxCutter: Cut-and-Repack Optimization for UV Atlases 41
3.3.1. Void Spaces and Compacting Cuts . 41
3.3.2. Cut-and-Repack Algorithm . 45
3.3.3. Packing Algorithm . 48
3.3.4. Results & Discussion . 49

3.4. Summary . 56

vii

Contents

II. Online: Techniques for the 3D Web 57

4. Compression and Encoding 59
4.1. Goals & State of the Art . 60

4.1.1. Timeline and Structure of Related Work . 60
4.1.2. 3D Mesh Compression before the WebGL Age 61
4.1.3. 3D Mesh Compression and Encoding in the WebGL Age 64
4.1.4. Material Models for Physically-Based Rendering (PBR) 66

4.2. Case Study: 3D Thumbnails vs. 2D Image Series . 71
4.2.1. 3D Thumbnails . 73
4.2.2. Comparing 3D Thumbnails and 2D Image Series 75
4.2.3. Results & Discussion . 79

4.3. Case Study: Efficient Encodings for 3D Mesh Data on the Web 81
4.3.1. Web-specific 3D Formats . 81
4.3.2. Experimental Setup . 83
4.3.3. Compression Rate . 83
4.3.4. Transmission and Decompression Speed . 84
4.3.5. Results & Discussion . 86

4.4. The Shape Resource Container (SRC) Format . 88
4.4.1. Bulding Blocks of the SRC Format . 91
4.4.2. X3D Integration and Data Compositing . 97
4.4.3. Results & Discussion . 101

4.5. A Compact Description for Physically-Based Materials 104
4.5.1. Material Model: Metallic-Roughness . 104
4.5.2. Material Model: Specular-Glossiness . 104
4.5.3. Comparison of Material Models . 105
4.5.4. glTF 1.0 Extension . 105
4.5.5. X3D Node . 106
4.5.6. Results & Discussion . 107

4.6. Summary . 109

5. Progressive Delivery 111
5.1. Goals & State of the Art . 112
5.2. Progressive Binary Geometry (PBG) . 116

5.2.1. Encoding . 116
5.2.2. Decoding . 117
5.2.3. Subdivision into Submeshes . 118
5.2.4. Results & Discussion . 118

5.3. POP Buffers . 121
5.3.1. The POP Buffer Concept . 121

viii

Contents

5.3.2. Progressive Transmission . 124
5.3.3. Rendering and LOD . 124
5.3.4. Results & Discussion . 127

5.4. Summary . 133

III. Results & Conclusions 135

6. Resulting Pipeline 137
6.1. A Pipeline for 3D Mesh Optimization for the Web . 139
6.2. The InstantUV Software: Example Results . 141

7. Conclusion 145

8. Future Work 147

A. Publications and Talks 149
A.1. Publications . 149
A.2. Talks . 151

B. Supervising Activities 153
B.1. Master Thesis . 153
B.2. Bachelor Thesis . 153

C. Curriculum Vitae 155

Bibliography 157

ix

Contents

x

1 Introduction

Nothing ever becomes real till it is experienced.
– John Keats, English Poet (1795 - 1821)

Through the advent of the internet, gathering information about a remote place or object has become easier and
more convenient than ever before. This development has proven to be highly useful within many areas of our
daily life, for example when booking holidays or when shopping online. Still, we usually prefer to experience
things first before we make a decision. For example, we prefer to walk through an apartment ourselves before
renting it, or we would like to closely inspect and try on new shoes before buying them. Therefore, various
online catalogs for all kinds of different items usually contain images of the respective products, providing us
with at least a single visual impression of each item. Classical 2D pictures often provide a good preview, but
since we perceive the world around us in three spatial dimensions, they can only provide a limited perspective,
and usually multiple images are necessary in order to convey an idea of the 3D shape and appearance of a real-
world object. In contrast, being able to interactively inspect a virtual 3D object with all degrees of freedom
(rotation, panning, zooming) potentially offers a user experience that is much closer to a real-life situation. This
does not only apply to online shopping, but to all areas where the Web-based inspection of a remote physical
object is desired. For example, many researchers from the fields of anatomy or archaeology prefer to study their
real-world subjects with the help of detailed virtual replicas. All in all, these facts naturally motivate a rising
interest in 3D visualization technology, including Virtual Reality (VR), Augmented Reality (AR) and, especially,
3D experiences on the Web.

Towards 3D Experiences for Everyone. 3D experiences on common computer screens or VR/AR devices
have often been regarded as the next logical extension of existing 2D experiences, well-known through images
or videos. Until a few years back, however, 3D content, apart from video games, could not play any role within
the daily life of most people, due to four different obstacles [Lim17]:

1. Hardware & Software Capabilities. The available degree of realism, due to limited hardware and soft-
ware capabilities, was insufficient for many 3D applications.

2. Hardware Availability. Dedicated 3D hardware existed, but was too expensive for most non-professionals.

3. Software Availability. 3D visualization software was costly and often not pre-installed on common PCs.

4. Difficulties with 3D Interaction. 3D interaction was commonly regarded as a difficult task.

All of those limitations are currently vanishing (see [Lim17]): Mostly thanks to the continuous development and
growth of the 3D game industry, graphics hardware and rendering software nowadays enable a high degree of
realism. Modern PCs and smart phones are usually equipped with powerful graphics processors (GPUs), and

1

1. Introduction

Fig. 1.1.: Comparison of two kinds of visualizations, illustrating different technological trends which have made
3D experiences much more appealing within the past few years. Left: original 3D asset, rendered within
a traditional Desktop software using classical Phong shading. Right: optimized 3D asset, rendered
within a standard Web browser, using state-of-the-art physically-based rendering. (Image: [Lim17])

sometimes even VR capabilities, making graphics hardware available to everyone. Since the advent of WebGL,
running within all common Web browsers, 3D rendering software is also becoming available to everyone as part
of common Web pages. Finally, difficulties with 3D interaction are vanishing as 3D content, often known from
video games, becomes a more and more common type of media, but also due to dedicated university programs
on Human Computer Interaction, aiming to make 3D interaction as accessible as possible. As a consequence
of these developments, high-quality, interactive 3D visualization is becoming increasingly available to everyone.
An example is shown in Fig. 1.1: while a few years back, 3D visualization was often not realistic and has only
been possible by using dedicated software for Desktop PCs (left), the trend has shifted towards highly appealing
3D experiences, running in standard Web browsers (right).

The Problem of 3D Content Optimization. With 3D visualization becoming available to everyone, a wide
variety of novel applications, such as 3D retail1 or Web-based 3D inspection of cultural heritage, currently starts
to emerge. However, despite hardware, software and know-how for 3D visualization being mostly available,
enabling high-quality, interactive 3D experiences, not all technical challenges related to the overall goal of 3D
visualization for everyone have been already solved. Concretely speaking, one very crucial aspect in this context
is 3D content itself, which is often acquired through 3D scanning methods and needs extensive processing before
it can be efficiently visualized at high quality. An example workflow is shown in Fig. 1.2.

Within the 3D game industry, where processing of 3D mesh data is already a key part of the daily work for
many years, robust workflows for the generation of high-quality 3D content have already been established. The
content shown within a game scene has typically been manually created by artists and then optimized by other 3D
specialists, such as technical artists, which have a strong technical background in real-time rendering technology.

13D Retail Coalition: http://3drc.pi.tv/

2

http://3drc.pi.tv/

Fig. 1.2.: Processing a digitized real-world object for 3D visualization inside a Web browser. Until recently,
the highlighted steps had to be implemented by an expert, using different tools, and a common 3D
data format for efficient delivery has been missing. This thesis addresses both of theses challenges by
proposing a single, fully-automated pipeline that covers mesh processing, compression and delivery,
and by presenting an efficient format for 3D mesh data on the Web. (Original Image: [LBF15])

Starting from a detailed model of a virtual character, for example, the optimization steps will include the creation
of a low-resolution version, the generation of a 2D layout for the texture atlas, the creation of texture maps,
and different post-processing steps. To achieve an optimal performance during runtime while, at the same time,
keeping the visual quality of the 3D assets as high as possible, all of these optimization steps are carefully
performed by experienced specialists, using several dedicated 3D tools for expert users.

For other areas, such as 3D retail applications, the 3D asset optimization workflow outlined within the previous
paragraph is usually not feasible. Following a similar content creation pipeline to build a whole virtual catalog,
for example, dedicated 3D artists would need to optimize every asset that should be visualized - an effort that
is not economically viable for most use cases. Within the domain of cultural heritage, a similar problem ex-
ists: while there is a strong trend towards 3D digitization of entire archives, this mass digitization also requires
capabilities for mass optimization in order to bring large amounts of 3D artifacts to the Web. Again, having
the necessary steps for 3D optimization executed manually by an expert is not a feasible solution. The basic
overall workflow shown in Fig. 1.2 is identical for both of the aforementioned domains, 3D retail and cultural
heritage. First, a real-world object is digitized, resulting in a point cloud that is converted into a high-resolution
3D mesh. The following Mesh Processing steps then produce a highly optimized low-resolution mesh that is
compact in size, yet visually almost identical to the unoptimized, high-resolution original. This complex step
usually involves the use of dedicated software packages and manual processing steps, performed by a 3D spe-
cialist. Likewise, the following Compression step, converting the optimized mesh into a Web-ready format that
is tailored towards fast delivery over networks, is usually implemented via custom software or scripting by dedi-
cated 3D specialists. This is especially necessary since, until recently, a standard format for 3D mesh data on the
Web has been missing, hence 3D experts had to select a matching format for the particular 3D viewer that should
be used. All in all, these processing steps require a lot of dedicated 3D expertise and the use of various different
tools, typically involving several manual processing steps. This, unfortunately, significantly limits the scalability

3

1. Introduction

of typical processing workflows, and what would be required to solve this problem is a single, fully-automated
processing pipeline.

4

1.1. Research Question: 3D Mesh Optimization for the Web

1.1. Research Question: 3D Mesh Optimization for the Web

A major problem within many application scenarios is the complexity of 3D optimization workflows, as well
as the lack of standard formats and tools to efficiently optimize, compress and deliver 3D mesh data for the use
with a wide range of Web-based visualization clients (see Fig. 1.2). The need for domain experts, being able
to work with various specialized tools for 3D optimization, significantly limits the scalability of workflows in
many important areas, such as 3D retail or online presentation of cultural heritage. Moreover, until recently, an
efficient standard format for 3D mesh data on the Web has been missing, which made not only optimization but
also compression and delivery of 3D mesh data a complex process with many unknowns. Overcoming these
limitations is a challenging task. A fully-automatic pipeline for 3D content optimization must be robust and
reliable enough to deliver results of high visual quality, while, at the same time, ensuring that the result are highly
compact, allowing for efficient real-time 3D online presentation. Moreover, since Web-based 3D experiences are
nowadays ubiquitous, an optimal 3D data format must allow for efficient delivery to a wide range of possible
client devices, including tablet PCs and smart phones.

The problems and limitations of existing 3D content optimization workflows for the Web led to the following
Research Question of this thesis:

Given a highly detailed 3D mesh, is it possible to design a fully-automated optimization pipeline that converts
this data into a compact, yet visually similar representation, using an efficient encoding that allows for streaming
over networks and online presentation based on standard Web technology?

In order to answer this question, two Subquestions have to be answered:

1. Is it possible to automatically convert a detailed 3D mesh into a compact, visually similar representation?

2. Is it possible to find an efficient encoding for 3D mesh data that allows for streaming over networks
and online presentation based on standard Web technology?

Answering the first subquestion requires extensive research in the area of 3D mesh processing, an academic
field closely related to computer graphics [BKP∗10]. In contrast, answering the second subquestion requires the
application of practical engineering know-how on current standards and common techniques, especially in the
field of Web technology. As will be shown within the next section, an answer to the research question will be
found by breaking it down into the two mentioned subquestions, and by further investigating different aspects of
the subquestions systematically.

5

1. Introduction

1.2. Structure of the Thesis

The research question of this thesis will be answered within two main parts, corresponding to the two sub-
questions, followed by a third part that concludes with an answer to the research question, also providing some
example results and an outlook on future work.

The first part, entitled Offline, answers the first subquestion: Is it possible to automatically convert a detailed
3D mesh to a compact, yet visually similar representation? It deals with automatic mesh processing algorithms
that turn a high-resolution input mesh into an optimized, textured 3D model, consisting of a small number of
polygons, but being visually very similar to the input. This part discusses fundamental mesh processing topics,
such as mesh simplification and mesh parameterization, and it also introduces novel automatic methods towards
saliency detection (Sec. 2.2), overlap removal for mesh parameterizations (Sec. 3.2) and compacting of a texture
atlas (Sec. 3.3).

The second part of this thesis, entitled Online, answers the second subquestion: Is it possible to find an efficient
encoding that allows for streaming over networks and online presentation based on standard Web technology?
This part primarily deals with engineering challenges when designing an efficient 3D transmission format for
the Web. It discusses different aspects such as compression (sections 4.2, 4.3, 4.4), encoding of material prop-
erties (Sec. 4.5) and progressive transmission of 3D mesh data (sections 5.2, 5.3). The focus of this part is the
development of a robust, real-world data format, therefore appropriate case studies and other results from prac-
tical evaluation are presented. Apart from those aspects, this part of the thesis also deals with standardization.
The SRC format proposed in Sec. 4.4, for example, has been serving as an important source of input for the
development of glTF 2.0, which is now the most popular format for 3D mesh data on the Web.

The contents of most chapters are based on existing publications. For publications where I have been the first
author, some parts of their text have been employed for the respective chapters with no or just minor changes.
Most parts, however, have undergone larger modifications in order to make them fit with the general style of
writing of this thesis, and in order to fit its structure. The publications which the chapters are based on are:

• Chapter 2: Mesh Saliency via Local Curvature Entropy. M. Limper, A. Kuijper and D. Fellner, Proc.
Eurographics 2016 (Short Papers) [LKF16]

• Chapter 3: Box Cutter: Atlas Refinement for Efficient Packing via Void Elimination. M. Limper, N. Vining,
A. Sheffer, Proc. SIGGRAPH 2018 (to appear) [LVS18]

• Chapter 4: Fast Delivery of 3D Web Content: a Case Study. M. Limper, S. Wagner, C. Stein, Y. Jung and
A. Stork, Proc. ACM Web3D, 2013 [LWS∗13], SRC - a Streamable Format for Generalized Web-based 3D
Data Transmission. M. Limper, M. Thöner, J. Behr and D. Fellner, Proc. ACM Web3D, 2014 [LTBF14],
Evaluating 3D Thumbnails for Virtual Object Galleries. M. Limper, F. Brandherm, D. Fellner and A.
Kuijper, Proc. Web3D, 2015 [LBFK15], Web-Based Delivery of 3D Mesh Data for Real-World Visual
Computing Applications. M. Limper, J. Behr and D. Fellner, In: Digital Representations of the Real
World: How to Capture, Model, and Render Visual Reality, M.Magnor, O. Grau, O. Sorkine-Hornung, C.
Theobalt (Editors), 2015 [LBF15]

• Chapter 5: Fast, Progressive Loading of Binary-Encoded Declarative-3D Web content. M. Limper, Y. Jung,
J. Behr, T. Sturm, T. Franke, K. Schwenk and A. Kuijper, IEEE Computer Graphics and Applications, Vol.
33, Issue 5, Sept.-Oct. 2013 [LJB∗13], Fast and Efficient Vertex Data Representations for the Web. Y.
Jung, M. Limper, P.Herzig, K. Schwenk and J. Behr, Proc. IVAPP 2013 [JLH∗13], The POP Buffer: Rapid
Progressive Clustering by Geometry Quantization. M. Limper, Y. Jung, J. Behr and M. Alexa, Proc. Pacific
Graphics 2013 [LJBA13]

6

1.3. Contributions

1.3. Contributions

This chapter summarizes the technical and scientific contributions which I have made during my work on this
thesis.

Answering the Research Question. As a positive answer to its research question, this thesis presents, for the
first time, a fully-automated optimization pipeline that converts highly detailed 3D mesh data into a compact, yet
visually similar representation, using an efficient encoding that allows for streaming over networks and online
presentation based on standard Web technology. As will be shown by example, results of the optimization
process are of high visual quality and can be efficiently rendered in real-time on a wide range of target platforms,
including Web-based 3D applications running on mobile client devices.

Novel Technical Contributions – Published Technical Papers. Beyond an answer to the research question, I
have made novel technical contributions to the fields of geometry processing and Web-based computer graphics.
I have initiated all first-authored publications that were written during the creation of this thesis. This applies to
the general structure of the papers and, with two exceptions [LJB∗13, LVS18], to the main ideas. If published at
conferences, I have orally presented the first-authored papers as well (except for the BoxCutter paper [LVS18],
which has not been published yet and hence has not been presented orally). The first-authored publications and
their respective contributions are (in chronological order):

• Fast Delivery of 3D Web Content: a Case Study. M. Limper, S. Wagner, C. Stein, Y. Jung and A. Stork, Proc.
ACM Web3D, 2013 [LWS∗13]. By showing that, in many practical scenarios, methods with zero decode
overhead can be superior to methods that produce more compressed data sets, this case study helped to
make important decisions during the design of future transmission formats, such as SRC or binary glTF. It
also motivates the design of POP buffers as a progressive transmission method with zero decode overhead.
A slightly similar study has been previously conducted as part of the diploma thesis of co-author Stefan
Wagner [Wag12]. However, that study used a different set of test models and test formats, and it did not
include tests on a mobile device.

• Fast, Progressive Loading of Binary-Encoded Declarative-3D Web content. M. Limper, Y. Jung, J. Behr,
T. Sturm, T. Franke, K. Schwenk and A. Kuijper, IEEE Computer Graphics and Applications, Vol. 33,
Issue 5, Sept.-Oct. 2013 [LJB∗13]. This paper is an extended version of a previous Web3D paper by Behr
et al. [BJFS12a]. In addition to the original content, it investigates a novel encoding technique for 3D
meshes, called Progressive Binary Geometry, which was a first step towards POP buffers. The paper also
investigates the effect of reordering schemes in order to reduce the filesize of image geometry containers.

• The POP Buffer: Rapid Progressive Clustering by Geometry Quantization. M. Limper, Y. Jung, J. Behr
and M. Alexa, Proc. Pacific Graphics 2013 [LJBA13]. This paper introduced POP buffers, a novel data
format for triangle meshes which leads to a unique combination of useful properties, namely stateless
buffers for progressive LOD control and a progressive streaming format with zero decode overhead. The
format allows for rapid encoding and decoding of general triangle soups, and it is especially useful for fast,
Web-based streaming of 3D mesh data to mobile client devices.

• SRC - a Streamable Format for Generalized Web-based 3D Data Transmission. M. Limper, M. Thöner, J.
Behr and D. Fellner, Proc. ACM Web3D, 2014 [LTBF14]. The SRC format proposed within this paper
enables a compact, practical encoding of scene data as well as 3D mesh data within a single container. It
has served as a basis for the later binary glTF standard, as maintained by the Khronos group. In addition,

7

1. Introduction

the SRC proposal contains capabilities for streaming of 3D mesh data, as well as a powerful addressing and
data composition scheme and two dedicated new X3D nodes, allowing for the easy and flexible integration
of SRC content into X3D scenes.

• Web-Based Delivery of 3D Mesh Data for Real-World Visual Computing Applications. M. Limper, J.
Behr and D. Fellner, In: Digital Representations of the Real World: How to Capture, Model, and Render
Visual Reality, M.Magnor, O. Grau, O. Sorkine-Hornung, C. Theobalt (Editors), 2015 [LBF15]. This
book chapter summarizes the general workflow of 3D data encoding and compression for real-world 3D
applications on the Web.

• Evaluating 3D Thumbnails for Virtual Object Galleries. M. Limper, F. Brandherm, D. Fellner and A.
Kuijper, Proc. Web3D, 2015 [LBFK15]. By introducing the concept of a 3D Thumbnail, being a simplified
version of a 3D asset, this paper discusses the potentials of using 3D meshes as interactive previews inside
a Web-based object gallery. A basic algorithmic pipeline for the fully-automatic creation of such 3D
thumbnails is designed and described. For several test data sets, the results are then compared against
animated 2D image series in terms of image quality and data volume. Results indicate that well-prepared
3D thumbnails potentially provide a more flexible visualization, while consuming a roughly similar amount
of bandwidth, compared to 2D image series.

• Mesh Saliency via Local Curvature Entropy. M. Limper, A. Kuijper and D. Fellner, Proc. Eurograph-
ics 2016 (Short Papers) [LKF16]. This paper introduces a novel fast and flexible method for saliency
estimation of 3D surface meshes. The algorithm is able to detect saliency at multiple scales. It is easy
to implement and useful for weighted mesh simplification, allowing to trade the preservation of details
against preservation of the overall shape of a 3D mesh.

• Box Cutter: Atlas Refinement for Efficient Packing via Void Elimination. M. Limper, N. Vining, A. Sheffer,
Proc. SIGGRAPH 2018 (to appear) [LVS18]. This paper is based on two core ideas by Alla Sheffer:
removing overlaps using a correlation clustering method, and compacting the resulting overlap-free charts
by extracting compacting cuts from void boxes. Both of these components are shown to be very useful
in practice in order to turn any input parameterization into a compact, overlap-free UV atlas with short
boundaries. The algorithm itself has been jointly designed by myself, by Alla Sheffer, and by Nicholas
Vining. In this context, I have been primarily responsible for the basic optimization strategy taken, for
the design of the efficient packing algorithm, as well as for the whole practical implementation and for
the generation of all experimental results (images, tables, figures). Moreover, I have contributed several
algorithmic building blocks, such as the region growing approach which preserves small pieces from being
cut, as well as the design of the importance-weighted variants for overlap removal and for the cut-and-
repack optimization.

Proven Real-World Implementation. The InstantUV software, which has been created during the writing
of this thesis, implements an entire, fully-automatic 3D optimization pipeline. It has already enabled paying
customers to replace several existing software components and manual pipeline stages by a single call to the
software, leading to an overall processing time of less than one minute per 3D-scanned artifact - as opposed to a
manually supported processing of half an hour to one hour for some of their previous solutions.

8

I
Offline: 3D Mesh Processing Algorithms

9

2 Mesh Simplification

Similar to pictures taken with a professional camera, original 3D mesh data can be of rather high resolution,
making it unsuited for direct transmission and presentation. Therefore, in both cases, 2D pictures and 3D meshes,
it is typically desired to simplify the data sets down to a specific target resolution for the particular application
(for example, for efficient online presentation).

In the case of 2D image data, one may simply downscale the picture to obtain a more compact representation.
Although this process is challenging on its own when maximum possible quality is desired (see [WWA∗16]),
usable results can already be achieved through rather simple methods, such as linear interpolation of pixel values,
since the 2D image data of the input and output is arranged on a regular grid of pixels.

3D mesh data, in contrast to images, is usually highly irregular. Especially, since the desired low-resolution out-
put mesh can use an arbitrary placement of the resulting vertices, a challenging problem is to find a configuration
that best approximates the shape of the high-resolution input mesh. To be able to find the best solution, one has
to decide about a metric that defines the quality of a given approximation. Depending on the application, surface
normals or topological features may be taken into account, or they may be ignored. For example, one may decide
to preserve small holes or small handles in the output mesh, or one may want to allow that they are potentially
removed during the simplification process. In addition, the speed and memory consumption of the simplification
algorithm may be a relevant criterion in practice, especially when meshes with many millions of polygons should
be simplified. Finally, there are algorithms that take into account the visual importance of individual regions of
the mesh, a metric which is usually referred to as saliency.

Within this chapter, we will first review different methods for mesh simplification. We will then investigate a
novel method for automatic estimation of mesh saliency, entitled Local Curvature Entropy (LCE). For certain
classes of models, this method improves the results when saliency-guided simplification is being used. However,
there are also limitations of automatic saliency detection, which will be described as well.

2.1. Goals & State of the Art

To be of practical use, especially when dealing with large, detailed 3D data sets (such as many common 3D
scans), a mesh simplification algorithm must be designed according to the following criteria:

• Good geometric approximation. The shape of the given input mesh should be well-approximated by the
resulting low-resolution output. Depending on the application, a guarantee on the maximum geometric
deviation from the original mesh may be required, for example when a user wants to be able to perform
meaningful measurements on the simplified version, using a guaranteed lower bound on the precision.

11

2. Mesh Simplification

Fig. 2.1.: Simplification of a 3D scan. Left to right: Original model (346K triangles), clustering-based simplifi-
cation (1.5K triangles), quadric-based simplification (1.5K triangles), variational shape approximation
(300 polygonal faces). (Rightmost Image: [CSAD04])

• Robust handling of arbitrary topology. Since, in general, no guarantees can be made about the topology of
the input mesh, the simplification algorithm must be able to deal with all kinds of topological properties
including non-orientable meshes, non-manifold geometry, duplicate vertices and arbitrary genus (handles).
All of these properties are frequently occurring within data sets arising from 3D scanning, as well as within
human-authored 3D content, such as CAD data.

• Ability to process millions of polygons. While, in theory, any general simplification algorithm could process
data sets of arbitrary size, the practical limits are execution time and memory. If simplifying a 3D mesh
takes significantly longer than it would take to create a simplified version by other means, such as through
manual 3D modeling, the respective algorithm may not be regarded as feasible for this task. Similarly, if
the memory requirements of the algorithm potentially exceed the capacity of the machine to be used when
processing a large input data set, an alternative method must be used.

Within the following, several approaches for mesh simplification will be discussed with respect to these criteria.
A more detailed summary of many relevant methods (those having appeared until 2002) can be found in the book
of Luebke et al. [LWC∗02].

Clustering Algorithms. The original Vertex Clustering approach was proposed in the early 90s by Rossignac
and Borrel [RB93]. By truncating coordinates, it clusters the mesh’s vertices into uniform grid cells. Vertices
sharing a cell are fused into a single representative vertex. After this first step, degenerate polygons are removed
to obtain the final connectivity. Extensions to the original algorithm are improving the quality of the results
or operate out-of-core, without and with help of modern GPU features [LT97, Lin00, DT07]. Vertex clustering
methods are very fast, but provide limited control over the resulting quality, compared to more advanced methods
based on edge collapses or variational shape approximation. Especially, with clustering approaches, the used
grid-like structures typically become visible in the resulting polygonal mesh - an example is shown in Fig. 2.1
(where the clustering method of the MeshLab1 software has been used). Willmott presents a fast clustering
algorithm which results in significantly better appearance than trivial clustering methods by including constraints
for enhanced preservation of surface attributes, such as normals or bone weights for animation [Wil11a]. This
relatively recent method has a high relevance in the context of real-time applications, such as rapid, dynamic

1http://www.meshlab.net/

12

http://www.meshlab.net/

2.1. Goals & State of the Art

in-game simplification. While clustering algorithms in general can process millions of polygons and deal with
input meshes of arbitrary topology, the quality of the results is limited through the use of local clustering criteria
and regular grids (Fig. 2.1).

Vertex Split

Edge Collapse

(Image: [Lim18])

Methods based on Edge Collapses. To achieve a better adaption of the simpli-
fied mesh to the original geometry, methods based on edge collapses analyze the
local geometry next to each edge (connecting two vertices) and then rank edges
according to their geometric importance. The simplified result is then obtained
by successively collapsing the cheapest edges of the mesh and updating collapse
costs on-the-fly where necessary. An example of an edge collapse operation and
its inverse, the vertex split, is shown on the right. As can be seen, collapsing a non-
boundary edge typically removes two more edges, two faces and one vertex from
the mesh. This only holds for manifold meshes, but the edge collapse approach
is able to handle non-manifold data as well (in which case a collapse may lead to
the removal of more than two faces and more than three edges). The pioneering
work of Garland and Heckbert uses a metric based on the quadric error [GH97]:
the local geometry around each vertex is approximated through a quadric that is
constructed from the planes of the vertex’ incident triangles. This allows to very efficiently compute the error
associated with an edge collapse from the distances of the new vertex position to those planes, as well as to
accumulate quadrics of two vertices into a joint quadric after a collapse operation. Moreover, it is possible to
compute the optimal position of the new vertex along the original edge, with respect to the quadric error. This
method has several advantages: First of all, while being slower than vertex clustering, it does still offer reason-
able runtimes for most practical applications. Examples are shown in Fig. 2.2, where the InstantUV software has
been used to simplify several large models using quadric edge collapses (using a Desktop PC with a 3.4 GHz
i7-3770 CPU and 32 GB RAM). As can be seen, the running times of the core algorithm scale well with the num-
ber of triangles, while the overhead of detecting closeby vertices for later collapsing (if desired) becomes more
and more relevant on the larger examples. This detection step is performed once before simplification, using a
simple 3D grid, and it could be sped up by using a more sophisticated, adaptive spatial data structure. For models
that are still much larger than the examples shown in Fig. 2.2, quadric-based methods may be used to obtain a
final result from a high-resolution, pre-simplified version, computed through vertex clustering (example: simpli-
fying a 100M triangle mesh down to 10M triangles by clustering, then obtaining a final 10K triangles version
through edge collapses). Another advantage of quadric-based edge collapses is that the geometric approxima-
tion quality is relatively good (Fig. 2.1). Finally, the original method by Garland and Heckbert contains useful
optional components, such as the preservation of boundaries through additional special quadrics (using planes
which are orthogonal to the boundary faces). It is therefore still the gold standard in many practical scenarios.
Extensions were proposed to account for vertex colors or color textures, or for importance values provided by
a user [GH98a, GH98b]. Lindstrom and Turk have proposed a different approach, which is still based on edge
collapses, but using rendered images in order to assess the visual error resulting from a collapse [LT00]. This
interesting approach is able to account for geometry and texture variations, as well as for different shading meth-
ods, but runtime performance suffers from the need to frequently generate new images of the model. Although
they are slower, methods based on edge collapses generally provide better results than clustering approaches,
since they globally rank all edges according to geometric criteria, creating a result that is well-adapted to the
features of the input mesh.

13

2. Mesh Simplification

Fig. 2.2.: Large models simplified to 5K triangles, using quadric-based edge collapses. From top left to bottom
right, original polygon count and processing time without (with) collapsing of closeby vertices were
as follows: Happy Buddha, 1M Triangles, 5s (6s), Dragon, 7M Triangles, 42s (49s), Thai Statuette,
10M Triangles, 61s (72s), Lucy, 28M Triangles, 192s (252s). Example images shown results generated
without collapsing closeby vertices. For these data sets, variants generated with collapsing enabled are
visually almost identical.

14

2.1. Goals & State of the Art

Variational Approach. The Variational Shape Approximation (VSA) method by Cohen-Steiner et al. formu-
lates the faithful geometric approximation of a 3D mesh through a set of planar polygons as an optimization
problem [CSAD04]. This is done by repeatedly clustering faces into best-fitting regions, resulting in adaptive,
anisotropic proxies. A polygonal mesh can then be extracted from those proxies. The quality of the results
produced by VSA may exceed the quality of local methods based on edge collapses, as it may provide highly
adaptive approximations (see Fig. 2.1). However, if a pure triangle mesh is desired, VSA may not be the best
choice, since it generally optimizes for polygonal output [CSAD04]. In addition, this approach also need sig-
nificantly more computation time than the quadric-based classic edge collapse algorithm. Finally, the original
method only supports 2-manifold surfaces (although extensions to support non-manifold input could be possible).
Because of these limitations, VSA not being widely used so far in the context of 3D optimization for real-time
rendering, where simplification based on edge collapses is still the most popular method.

Extensions: Out-Of-Core Processing and Error Bounds. Several approaches have been proposed in order to
simplify meshes of arbitrary size, by swapping portions of the data in and out the main memory (RAM) [Lin00,
BGK03,CRMS03]. Clustering algorithms are best-suited for this purpose, as they already subdivide the 3D space
intersected by the model’s bounding box into small areas (cells), which can then be processed separately [Lin00].
Shaffer and Garland propose a method that does not uniformly cluster vertices, but instead accounts for features
of the 3D model in order to adaptively subdivide the 3D space [SG01]. This method produces results of higher
quality, but it is also slower than algorithms based on uniform clustering. Besides scalability, a very different (yet
not less important) practical requirement is the ability to guarantee that the geometric deviation of the simplified
model from the original stays within given bounds. In order to strictly limit this deviation, Zelinka and Garland
introduce the Permission Grid, a spatial structure that is able to guide several kinds of simplification methods in
order to guarantee a bounded error [ZG02]. Permission grids work with arbitrary triangular meshes, and their
complexity is independent from the complexity of the model itself.

Saliency Detection for Improved Simplification. The analysis of Mesh saliency is an area of research that
has been intensively worked on within the past decade. The general aim is to automatically detect distinctive
regions of a 3D mesh. Apart from saliency-aware simplification, applications are automated best viewpoint se-
lection, detection of interest points, and 3D scan registration, to name a few [LVJ05, FSG09, DCG12, SLMR14].
The seminal paper of Itti et al. introduced a method to compute saliency values on 2D images [IKN98]. In this
context, saliency is defined as a measure of how strongly a part of an image will draw a human’s immediate at-
tention. The method incorporates knowledge about the human visual system, employing a 2D neural network to
simulate the possible movement of a human’s focus of attention. Lee et al. have transferred the basic concept to
the domain of 3D surface meshes [LVJ05]. One of their key findings is that, within this domain, curvature is the
main source of information. Saliency is computed at multiple scales from filtered mean curvature values, using
a Difference-of-Gaussians (DoG) method. The authors propose a non-linear weighting scheme for the different
levels, such that maps with a few distinctive peaks are promoted over ones with many similar peaks. Demon-
strated applications are mesh simplification and best viewpoint selection. Page et al. introduced the concept of
Shape Information [PKS∗03]. The aim of the method is to measure how much information is contained within
a 3D surface mesh. The authors reason that Shannon entropy of discrete surface curvature values is well-suited
for this purpose (see [LKF16]). Leifmann et al. use Spin Images to measure how different a vertex is from its
neighborhood [LST12]. Their main application is best viewpoint selection. Feixas et al. compute saliency by
considering the information channel between a set of viewpoints and the polygons of the mesh [FSG09]. The
approach is therefore primarily designed for best viewpoint selection, which is demonstrated as main application.
More recently, Song et al. presented a spectral method for saliency analysis [SLMR14]. Saliency is determined

15

2. Mesh Simplification

via deviations from a local average in the frequency domain, using the log-Laplacian spectrum. The method is
shown to detect most of the typically salient features on several test meshes. As applications, the authors present
saliency-driven mesh simplification and registration of 3D scans. Due to the spectral decomposition, the compu-
tational costs of the approach limit its direct application to a class of very small meshes. However, the authors
claim that, for many cases, satisfying results can be obtained using simplified versions. Computed results are
propagated back to the original, high-resolution meshes, using closest point search and a subsequent smoothing
step. A more detailed survey of the state of the art in mesh saliency detection can be found within the same work
of Song et al. [SLMR14]. Using a saliency map for simplification is an idea that existed before the term saliency
had been used, but was already introduced by Kho and Garland in their work on user-guided simplification,
being a follow-up of the original paper on quadric error metrics [GH98b]. Recently, I have proposed a novel
method for fast and effective saliency detection, entitled Local Curvature Entropy (LCE), aiming at automatic
saliency-guided simplification as a major application [LKF16]. This approach will be discussed within Sec. 2.2.

16

2.2. The LCE Method for Saliency Detection

2.2. The LCE Method for Saliency Detection

Error-driven simplification methods purely based on mesh geometry, such as the Garland-Heckbert algorithm,
usually generate pretty good geometric approximations. However, in some cases it may be desired in addition
to preserve certain important features even more than others, for instance the face of a character. Therefore,
researchers have proposed to use saliency-aware simplification methods, weighting the errors associated with
vertices (and hence also with edges to be collapsed) by an additional saliency factor [LVJ05]. This section
describes the Local Curvature Entropy (LCE) method, as recently proposed by my coauthors and me [LKF16].
Until the advent of LCE, one open challenge was the implementation complexity of current saliency detection
methods, which impedes their integration into existing mesh processing pipelines. In addition, long computation
times may also limit the applicability of saliency detection in practice. LCE improves over the state of the art in
both of these areas: On the one hand, the method is easy to implement, and on the other hand it is fast and able to
process large meshes in reasonable time. The relation between LCE and the most relevant related work is briefly
summarized within the next paragraph.

Relating LCE to Previous Work. Like the original method of Lee et al., LCE uses the mean curvature to
measure, at each vertex, deviations from a local neighborhood [LVJ05]. However, the information-theoretic def-
inition of LCE works well even on a single scale (which is not the case for the method of Lee et al.). Moreover,
the definition does not need to explicitly suppress frequently occurring values inside the saliency maps, since the
information-theoretic score already naturally takes the frequency of each symbol into account. The shape infor-
mation concept proposed by Page et al. is conceptually related to the LCE saliency measure as well [PKS∗03].
However, LCE does not use a single value to classify the whole surface. Instead, it is able to compute per-vertex
saliency scores, and it is able to operate at multiple scales. Finally, LCE bears a certain similarity to spin images,
in the sense that it also uses a local descriptor at each vertex to measure local distinctiveness. However, while
spin images are more complex than LCE, they fail to detect salient features in some cases (see [SLMR14]). The
LCE measure is invariant to the 3D model’s translation, scale or rotation, and it is not dependent on any particular
viewpoint (in contrast to the method of Feixas et al., for example). This is an important property, since our goal is
to use mesh saliency as a general geometric tool for improving mesh simplification, therefore a view-independent
measure should be preferred.

The rest of this section discusses the actual LCE algorithm and provides experimental results.

2.2.1. Local Curvature Entropy (LCE)
LCE defines mesh saliency at each vertex via local curvature entropy, using the concept of Shannon Entropy,
which describes the expected value of the information within a message [Sha48]. More precisely, Shannon
entropy allows to compute the number of bits H(X) that are needed to encode a message X (not necessarily
an integer number), without any loss of information. Assuming that X is composed using n different kinds of
symbols with probabilities pi, its entropy is defined as

H(X) =−
n

∑
i

pi log2(pi). (2.1)

Curvature has been found to be the main source of information on a 3D surface, since a shape can be locally
characterized solely via its principal curvatures [PKS∗03]. Therefore, we can estimate mesh saliency locally,
using the mean curvature at each vertex vi [LVJ05]. By considering curvature values within the geodesic r-
neighborhood ϕ = {w0, ...,wm} of vi a discrete message, we are able to compute the local curvature entropy

17

2. Mesh Simplification

(a) l0 (b) l2 (c) l4 (d) l0...l4 combined

Fig. 2.3.: Multi-scale saliency estimation using LCE. (Image: [LKF16])

(LCE). This measure can directly be regarded as the local amount of information at the given vertex. Like Page
et al., we may obtain a discrete range of possible symbols from the continuous curvature values using a uniform
sampling into a fixed number of n bins, resulting in a discrete range of possible symbols σ0, ...,σn [PKS∗03].
The local curvature entropy at vertex vi can then be computed as

H(ϕ) =−
n

∑
j

pϕ(σ j) log2(pϕ(σ j)),

using the local probabilities pϕ(σi) of each symbol within ϕ.

Area Weighting. Symbol probabilities could simply be computed with respect to the amount of vertices within
the local neighborhood ϕ. However, if the triangle distribution is irregular, large, possibly stretched triangles
might heavily influence distant neighbors, for example. Since such effects are usually not desired in applications
like mesh simplification, where we want a local measure of importance, we can mitigate the problem to a certain
amount by weighting vertices by their area of influence. This can be done using mixed voronoi cells, providing
a complete, overlap-free tiling of the overall mesh surface (see [BKP∗10], for example). Using the area weights
A0, ...,Am of each vertex, the probability of a given symbol within the local neighborhood ϕ is then defined as

pϕ(σ) =
∑

m
k Ak χk(σ)

∑
m
k Ak

,

χk(σ) =

{
1, if binnedCurvature(wk) = σ,

0, otherwise
.

Multi-Scale Saliency Detection. With the radius parameter r, we are able to control the size of features our
algorithm will detect. However, it is usually desirable to detect features at multiple scales, so that neither small,
distinctive details, nor larger, interesting regions are missed. To achieve this, we can use a multi-scale detection
by varying the radius parameter up to a fixed maximum rmax. Saliency maps are then computed at multiple levels
l0, ..., ln−1, where the radius parameter for each level li is simply defined as ri = 2−irmax. In order to obtain a
single saliency map that accounts for features at multiple scales, the saliency maps for different radii can simply
be blended, using linear weights or a different weighting scheme that emphasizes features at a certain level. An
example is shown in Fig. 2.3.

18

2.2. The LCE Method for Saliency Detection

(a) Spectral Saliency [SLMR14] (b) LCE

Fig. 2.4.: Results obtained using spectral saliency (left) and using LCE (right). (Image: [LKF16])

2.2.2. Results & Discussion
To evaluate the performance of LCE, several experiments have been performed. Throughout, a maximum radius
parameter of rmax = 0.08

√
AM was used, where AM is the surface area of the mesh, and saliency has been

computed at five different levels. Choosing a largest possible feature size is necessary for all feature detection
algorithms, and the particular choice for rmax matches well with the class of objects used during the experiments
(Fig. 2.3). The number of bins for discretizing curvature values was always set to 256. Using a uniform weighting
scheme to combine these levels into a single, resulting saliency map provided satisfying results. Fig. 2.3 shows
an example. Fig. 2.4 shows a visual comparison of the results for four different test meshes, comparing the
LCE method to the spectral approach of Song et al. [SLMR14]. As can be seen from Fig. 2.4, LCE captures
all important features that would typically be considered salient, such as feet or facial features2. Results for the
spectral method have been computed with the suggested setting of initial simplification to 3,000 faces per mesh.
As can be seen from the inset part of the figure, upsampling the results from the simplified mesh to the original
one, using closest point correspondences, leads to patch-like structures, which are also shown and discussed by
Song and coauthors [SLMR14]. Although their original implementation has been used, including a smoothing
step, some patch-like structures remained visible. In contrast, LCE operates directly on the high-resolution mesh,
hence the results are free of such artifacts (Fig. 2.4).

Fig. 2.5.: Running times for different resolutions
of the Stanford bunny.
(Image: [LKF16])

Computation Times. To evaluate the runtime perfor-
mance of the LCE algorithm, it was tested with several
meshes from the SHREC 2007 watertight track, as well
as with a few other popular test meshes. Results have
also been compared to the ones generated using the spec-
tral method by Song and coauthors. Throughout the ex-
periments, a test machine with 3.4 GHz i7-3770 CPU and
32 GB RAM was used. Figure 2.5 shows a comparison
of runtime performance for both evaluated methods, using
the Stanford bunny at different resolutions. The spectral
method of Song et al. uses an eigenvalue decomposition of

2To visually evaluate the results more in depth, the interested reader is referred to the supplemental material of the original paper, which
contains results for all test meshes in PLY format, with saliency values mapped to vertex colors using two different transfer functions, as
well as saliency values as a custom, scalar quality property: http://max-limper.de/publications/Saliency

19

http://max-limper.de/publications/Saliency

2. Mesh Simplification

[SLMR14] LCE
Model #vert. #∆ 3K∆ 5K∆ 3K∆ orig. #∆

Wolf 4,344 8,684 10.26 44.97 0.27 0.82
Woman 5,641 11,278 9.20 37.37 0.21 1.38
Camel 9,757 19,510 10.72 43.84 0.36 3.95
Cup 15,070 30,140 9.73 46.81 0.28 5.40
Bimba 15,516 31,028 10.36 42.81 0.52 9.30
Hippo 23,132 46,202 11.19 44.77 0.53 31.21
Max Planck 27,726 55,448 11.23 44.90 0.22 16.47
Bunny 34,834 69,451 11.28 43.29 0.21 29.29
Horse 48,485 96,966 11.27 44.16 0.22 47.75

Tab. 2.1.: Computation times, in seconds, for spectral saliency [SLMR14] and for LCE. For the spectral method,
each model has been previously simplified to 3,000 and 5,000 triangles.

the mesh Laplacian, which is the dominant factor of the computation and has a runtime behavior ofO(n3). There-
fore, it can become computationally too expensive if an input mesh consists of more than a few thousand vertices.
Because of this, the computation times of the spectral method, as shown in Table 2.1, have been measured using
an initial simplification to 3,000 faces (recommended default setting), as well as to 5,000 faces. As can be seen,
the LCE method is more than fifty times faster when executed on the same, simplified meshes. Moreover, for test
meshes of moderate size, it even remains more than one order of magnitude faster when operating on the original
mesh.

Saliency-Aware Simplification As part of the experimental evaluation of LCE, saliency-aware simplifica-
tion has been evaluated as a possible application. The implementation uses the well-established OpenMesh
library [BSBK02]. In addition to the standard quadric module, it uses a custom saliency module, using a thresh-
old percentile to protect the most salient regions of the mesh. When no more collapses are allowed, the saliency
threshold is iteratively relaxed until the process converges to the desired number of vertices. An alternative
approach, which also works well, is to multiply quadrics used to compute errors during simplification by the
saliency weights (this method has been used to generate the results shown in the online demo application3).

Similar to the work of Song et al., the geometric root mean square error (RMSE) introduced through the saliency-
guided simplification has been evaluated and compared with the standard quadric-based approach [SLMR14,
GH97]. For direct comparison, results for their spectral approach are also included. For both saliency detection
methods, the same framework was used for simplification. Figure 2.6 shows the results on the full test data sets,
using a reduction to 50% of the original vertices. As can be seen, both of the saliency-based methods perform
mostly equally well. For some cases, the LCE method performs slightly better. One reason for this is that it can
use the vertex budget more efficiently in small, isolated salient regions, such as the eye of the hippo mesh, as
shown in Fig. 2.7. The spectral approach uses values propagated from a simplified mesh, hence the classification
result is more blurry. This leads to an unnecessary high amount of vertices around small, isolated features. For
the bimba mesh, however, using the spectral method resulted in a lower RMSE. This is due to the many fine,
small-scale structures within the hair of the character, which are more dominant in the high-resolution mesh used
by the LCE algorithm, and less dominant in their simplified version. Preserving that many details consumes
most of the vertex budget, therefore the overall geometric error of the mesh suffers more in this case. If desired,
this could be changed using a different weighting scheme, boosting large-scale features (Fig. 2.3). Another

3available at http://max-limper.de/demos/saliency/

20

http://max-limper.de/demos/saliency/

2.2. The LCE Method for Saliency Detection

Fig. 2.6.: Geometric error (RMSE) between the original meshes and 50% reduced versions. Saliency-aware sim-
plification trades in geometric precision for better preservation of important features. (Image: [LKF16])

(a) [GH97], RMSE: 1.17 ·103 (b) [SLMR14], RMSE: 2.24 ·103 (c) LCE, RMSE: 1.52 ·103

Fig. 2.7.: Detail view onto the eye of the simplified hippo model (50% of the original vertices). (Image: [LKF16])

approach would be to smooth the saliency map. Similarly, since LCE is applied to the unmodified mesh, small
geometric changes, such as noise, will directly impact the result. However, a smoothing step helps to overcome
this sensitivity.

Another example is shown in Fig. 2.8. The Web application allows the user to choose a weighting factor for the
saliency values during simplification, using a simple slider. This way, users can balance the result to preserve
salient regions (such as the face of the wolf model shown in Fig. 2.8) stronger or less strong, at the cost of
geometric approximation quality in less salient parts of the mesh.

As can be seen from the experimental results, using the Local Curvature Entropy (LCE) algorithm allows for a
straightforward and robust realization of weighted simplification, boosting the preservation of detail in important
regions of the input mesh.

21

2. Mesh Simplification

Fig. 2.8.: Web application for saliency-guided simplification. Top: 20% saliency weighting. Bottom: 90%
saliency weighting.

22

2.2. The LCE Method for Saliency Detection

Fig. 2.9.: Comparing geometrically computed saliency maps (LCE) to human focus. (Image: [AMB∗17])

Limitations. Recently, Agus and coauthors have compared saliency maps computed via LCE to those obtained
from the fixation of human observers, in the context of virtual 3D exhibitions of sculpture collections, shown
on large displays that are placed within a real museum (Fig. 2.9). The stone sculptures used within their experi-
ments have a rather complex surface geometry with many, strong signs of damage and large parts of the original
sculptures being missing. As shown by Agus et al., such surface degradations and missing parts lead to undesired
results when applying a geometrically motivated, fully-automatic method, such as LCE. This can be seen from
their comparison to ground truth values obtained from human fixations (which are highly depending on seman-
tics and may even be influenced by extrinsic properties, such as scene lighting [LCSL18]). A distinction between
scratches and letters, or between random surface degradations and a face, is something that low-level algorithms
like LCE cannot provide, as this would require to incorporate more sophisticated background knowledge, which
human observers typically have and apply. In contexts where a fully-automatic saliency detection method is
needed, machine learning approaches may provide an interesting alternative in the future [KDCM16].

23

2. Mesh Simplification

2.3. Summary

Within this chapter, we have first reviewed different methods for mesh simplification, including saliency-weighted
methods. We have also seen a novel method for automatic mesh saliency estimation, entitled Local Curvature
Entropy (LCE).

We have seen that the most popular method for mesh simplification is still the quadric-based edge collapse algo-
rithm by Garland and Heckbert, since it offers relatively fast execution speed and high-quality results [GH97].
For very large models, consisting of many millions of polygons, solutions based on vertex clustering may be the
better choice, as they are much faster and efficient out-of-core variants exist [Lin00]. In practice, a hybrid ap-
proach may be to simplify a large model down to a few million triangles using out-of-core clustering techniques,
and then applying quadric-based edge collapses in order to obtain a low-resolution result of good quality. On the
other end of the spectrum, when high-quality results are desired and runtime performance is not a major factor,
Variational Shape Approximation (VSA) allows to generate low-resolution polygonal meshes that approximate
the original shape of the high-resolution model very well. The method, however, does not provide optimal re-
sults if the required output is a triangle mesh, and its longer runtimes made it less attractive than the classic
quadric-based method in practice.

After reviewing different methods for automatic saliency detection on 3D meshes, we have discussed the LCE
method for automatic saliency detection, allowing for fully-automatic, saliency-guided simplification [LKF16].
For certain classes of meshes, this method leads to improved preservation of salient areas. However, if the
input surface is too noisy, or if an object contains surface degradations, the results of any purely geometri-
cally motivated saliency detection method, including LCE, will be rather meaningless [AMB∗17]. An inter-
esting direction for future work may therefore be to craft domain-specific solutions for mesh saliency assign-
ment, for example using machine learning techniques and results obtained from experiments with human ob-
servers [LCSL18, KDCM16].

24

3 Texturing

In every-day language, the term texture refers to physical properties of a surface, such as roughess or waviness.
In earlier days of computer graphics, the term texture mapping became common to describe the process of
mapping a 2D image (usually colored) onto a 3D surface. The aim is usually to model the appearance of the
surface independent from the geometry of a polygonal mesh. The most simple example would be a simple quad
on which a photography of a brick wall is applied, mimicking the appearance of a detailed 3D wall inside a
virtual scene. Over the past decades, texture mapping has become a term that describes the process of applying
different kinds of 2D images, acting as so-called texture maps, to a 3D surface (including base color maps, normal
maps, occlusion maps, displacement maps or roughness maps, to give some examples). This allows for a more
sophisticated modeling of appearance and geometric surface details, using solely images. To describe a texture
mapping workflow, the term texturing has been established as well. A standard book on computer graphics states
it this way:

Simply put, texturing an object means “gluing” an image onto that object.
– Real-Time Rendering, Third Edition

Moreover, texturing may refer to the whole, combined process of finding a good texture mapping and creating
the corresponding 2D images, and we will use this notion in the following.

Within this chapter, we investigate the texturing stage of the proposed 3D mesh optimization pipeline. This stage
involves different steps:

• Segmentation: Subdivide the mesh into charts that can be unfolded in 2D with low distortion.

• Parameterization: Unfold each 3D chart, with minimum distortion and without self-overlaps.

• Atlas Packing: Arrange unfolded charts inside a common 2D space, called the texture atlas.

• Texture Baking: Use the texture atlas layout to generate 2D images, storing surface details.

The output of the texturing stage is then a mapping from 2D image space to the 3D surface of a model, along with
detailed information about surface details, stored in texture images. This process allows to drastically reduce the
resolution of scanned 3D data sets without a notable loss in visual quality - an example is shown in Fig. 3.1.

Within the following sections, we will first review the most important goals and the state of the art for each of
the mentioned steps. We will then investigate a novel method for overlap removal with nearly-optimal, minimum
cuts, which has recently been introduced by my coauthors and me (Sec. 3.2) [LVS18]. Likewise, we will study
a new method for compaction of existing texture atlas layouts, which has been proposed within the same work
(Sec. 3.3).

25

3. Texturing

Fig. 3.1.: Colors from a high-resolution mesh (top) are applied to a low-resolution version (middle) by storing
them in a texture image (bottom). This process (which may be applied to other surface attributes as
well) is called texturing. It requires to unfold the 3D surface to the 2D image space, a process which is
often referred to as unwrapping or parameterization.

26

3.1. Goals & State of the Art

3.1. Goals & State of the Art

u

v
1.0

1.00.0
0.0

The general problem we investigate in this chapter is the efficient storage of sur-
face attributes from a high-resolution mesh in 2D texture images, which will then
be applied to a low-resolution mesh using texture mapping. The two dimensions
of the continuous 2D space, to which the 3D mesh needs to be unfolded, are often
labeled as u and v, and the 2D coordinates of the mesh used in this space are hence
often called UV coordinates. Similarly, the continuous 2D space is commonly re-
ferred to as UV space. In most situations in practice, this UV space is square and
limited to contain coordinates within a normalized range [0,1]2, which is used to
store the atlas layout of a scene or mesh, consisting of multiple 2D pieces (see
inset figure). These 2D pieces are commonly called charts, islands or shells, and
we will use the term UV chart in the following when referring to such a 2D piece. Likewise, we will use the
term 3D chart to refer to a corresponding piece of the 3D surface. It is worth noting that, in practice, alternatives
to this standard algorithmic pipeline exist, such as Mesh Colors or PTex, storing color information without using
a classical UV charts. However, these methods are out of the scope of this thesis, and the interested reader is
referred to the respective publications by Burley and Lacewell and Yuksel et al. [BL08, YKH10, Yuk17].

A possible algorithmic pipeline that covers segmentation, parameterization and packing has been presented in
the seminal paper by Lévy et al., and a more recent exemplary pipeline covering all steps has been recently
presented by my coauthors and me, therefore these works may serve as a starting point [LPRM02, LBFK15].
In addition, the Bachelor’s thesis of Florian Brandherm (which I have supervised) presents a possible mesh
optimization pipeline, including an example implementation for each stage and showing some practical results
as well [Bra14]. The single steps of the texturing process, segmentation, parameterization, atlas packing and
texture baking, are summarized more in detail within the following paragraphs. Before reviewing those steps,
we will have a brief look at the theoretical aspects of unwrapping, covering the necessary prerequisites that will
allow us to understand the aims of the segmentation and parameterization steps more in detail.

3.1.1. Background: Unfolding 3D Surfaces to the Plane
Being able to unwrap a chart without overlaps and without distortion imposes two requirements on the input,
which are mostly independent of each other: First, the 3D chart’s topology must allow for unwrapping. Second,
the chart’s geometry must have a gaussian curvature of zero everywhere, otherwise distortion will occur.

Topological Requirements. Most parameterization algorithms expect an input chart to be a topological disc.
This means the 3D chart to be parameterized must be a mesh with exactly one boundary loop and no topological
holes or handles. A simple counter-example is shown in Fig. 3.2, where the mesh has a single boundary loop, but
one topological hole (one handle). This makes it generally impossible to unfold this mesh to the plane without
any self-overlaps. The Euler-Poincaré formula provides a relationship between the number of faces (F), edges
(E), vertices (V), boundary loops (B) and genus (G) of an arbitrary polyhedron:

V +F−E +B = 2−2G. (3.1)

Most popular version of the formula do not contain B and instead assume closed polyhedra. However, each
boundary loop can be trivially closed by adding another (polygonal) face, turning the result into a closed poly-
hedron again. Therefore, the number of boundary loops can be added to the formula the same way as faces are
taken into account (adding it on the left-hand side in Eq. 3.1). As can be seen from the formula, the genus G

27

3. Texturing

Fig. 3.3.: Three manifold 3D charts and their topological properties, being used to efficiently check if they can
be unwrapped to the plane without further modification (Original Image: [Lim18]).

of a triangle mesh can be efficiently computed if all the other properties are known (see [Lim18]). This allows
segmentation algorithms to check if a 3D chart would be a feasible input for parameterization. Three example
candidate charts are shown in Fig. 3.3. It is easy to see that the leftmost chart can be easily unwrapped to the
plane. The middle chart has two boundary loops, one of them would become a hole during unwrapping - a situa-
tion which cannot be handled by many parameterization algorithms. For methods that don’t support holes in the
input, holes can simply be temporarily filled. The additional triangles will then be removed after the unwrapping
step. An alternative solution would be to connect both of the original boundary loops through a cut, turning them
into a single, long boundary loop. The rightmost chart of the figure cannot be unwrapped to the plane at all, as
it has non-zero genus, containing a single handle (similar situation as shown in Fig. 3.2). In order to unwrap
this chart, additional genus-reducing cuts must be applied, which requires the location and further geometrical
analysis of handles in order to allow for optimally short cuts. One way to tackle this problem is to detect shortest
loops at each vertex and then select the shortest loop that reduces the genus without cutting the surface apart, as
proposed by Erickson and Har-Peled [EHP02]. Sheffer and Hart proposed an extended approximate version that
uses additional hints on vertex visibility to obtain shorter cuts in most cases while testing less vertices [SH02].
Another solution to this problem is the construction of a Reeb graph to guide genus-reducing cuts, as proposed
by Wood et al. and Dey et al. [WHDS04, DFW13].

Fig. 3.2.: Mesh with a
genus of one.

Geometrical Requirements. While topological requirements ensure that a
mesh can be unwrapped to the plane in principle, mesh topology does not tell us
anything about the distortion that this unwrapping process will introduce. How-
ever, it is possible to analyze the geometry of a mesh in order to predict the mini-
mum possible distortion that will occur in the resulting parameterization. The key
measure in this case is the Gaussian Curvature K, being defined as the product
K = κ1κ2 of the two principal curvatures κ1,κ2 at a given point on a two-manifold
surface. The higher the gaussian curvature is, the more distortion will occur. Con-
versely, a disc-topology mesh with zero gaussian curvature can be unwrapped to
the plane without any distortion. If one of the principal curvatures is zero, for
example, K will also be zero, regardless of how curved the surface is in the other
principal direction. An example would be the surface of an open cylinder, or
the lateral surface of a cone, which has been cut from top to bottom: this kind
of surface is highly curved into one direction, but not curved at all in the other,
orthogonal principal direction. It is therefore possible to unwrap it to the plane
without any distortion, or, using a more practical metaphor: without stretching. Imagining the surface would be
made of real, rigid material, such as sheet metal or paper, it is easy to imagine that stretching the material is not
possible without breaking it. However, the material may be bent or folded into one direction. A simple example

28

3.1. Goals & State of the Art

Fig. 3.4.: Distortion-reducing cuts. Left: single boundary loop at the bottom, leading to large distortion during
parameterization. Right: additional cuts applied, resulting in a low-distortion parameterization.

of a surface with a non-zero gaussian curvature everywhere would be a sphere: as the surface is curved in both
principal directions, it cannot be unwrapped without distortion at all. In this case, a segmentation algorithm must
limit the expected distortion to an admissible amount by cutting the sphere’s surface into multiple charts, or by
introducing several cuts that will allow the parameterization algorithm to additionally distribute distortion by de-
forming the resulting, independent 2D boundaries. An example is shown in Fig. 3.4, showing both kinds of cuts
(chart-separating cuts and additional cuts that do not separate a chart into multiple pieces, but just reduce distor-
tion). Finally, an alternative to distortion-reducing cuts is the use of cone singularities during parameterization,
concentrating distortion at singular points.

3.1.2. Segmentation
When aiming to parameterize a triangulated 3D surface mesh, the segmentation problem can be tackled from
at least two different points of view, where each of them solves a different labeling problem. First, chart-based
approaches focus on the problem of assigning labels to individual triangles. This is typically done by region
growing methods, starting, for each chart, from a seed triangle and continuously adding neighboring triangles
in a breadth-first way until a certain criterion is satisfied or no more triangles can be added. Second, seam-
based approaches label edges that should be cut. Usually these edges are connecting different singular points,
but additional criteria exist to control the cut path. For both cases, chart-based and seam-based approaches, the
goal is the same: to obtain a chart layout where each chart can be unwrapped to the plane (parameterized) with
minimum distortion.

A straightforward solution for the segmentation problem is to consider each triangle or quad a separate chart, or
to pair parameterized triangles together to form 2D quads, in order to achieve a compact atlas [CH02, PCK04,
Yuk17]. However, the more common approach in practice is to prefer larger charts, for several reasons. One
reason is enhanced continuity, since 2D seam edges may become visible in the rendered 3D result, and it may
take additional effort to prevent those (also, and especially, when MIP-mapping is used), as described by prac-
titioners12 and in research literature [CH02, LFJG17]. Another reason to keep the number of texture seams low
is caused by the fact that real-time rendering pipelines based on popular graphics APIs (such as OpenGL using
retained mode) are relying on single-indexed data, where a vertex will always have a single 3D position, normal
vector and UV position, for example. This introduces the need for duplication of vertices along the UV seams,
since such vertices will be represented once in 3D space, but twice or more times in UV space, which is not
possible with single-indexed rendering. Moreover, even if a multi-indexed representation can be used by the
rendering engine, vertex data cannot be cached as efficiently during rendering as it would be the case without
UV seams [HG97]. Texture baking or rendering engines may need to duplicate triangles across seams in order to

1http://miciwan.com/SIGGRAPH2013/Lighting%20Technology%20of%20The%20Last%20Of%20Us.pdf
2https://www.sebastiansylvan.com/post/LeastSquaresTextureSeams/

29

http://miciwan.com/SIGGRAPH2013/Lighting%20Technology%20of%20The%20Last%20Of%20Us.pdf
https://www.sebastiansylvan.com/post/LeastSquaresTextureSeams/

3. Texturing

ensure smooth visual transitions [GP09]. Finally, a reason to prevent seams may be the difficulties they cause in
content creation. An artist creating a texture image, for example, will usually prefer to paint on a large, coherent
region, instead of painting multiple small pieces. Likewise, a UV layout for a CAD part in order to apply a re-
peating material texture, such as a fabric cover, should usually have no visible seams. Because of those reasons,
we will limit ourselves in the following to approaches that can be used to create a texture atlas, consisting of a
few large charts, striving to keep the number of seam edges as small as possible while, at the same time, allowing
to unwrap the resulting charts with minimum distortion.

Chart-based approaches. One of the first automatic chart-based approaches that segments a 3D mesh for
texturing has been proposed by Maillot and coauthors [MYV93]. Their method performs a binning of faces
according to their normal in order to assign them to different charts. Sander et al. presented a method that
accounts for fitting error and chart compactness, initially defining all triangles to be separate charts and then
repeatedly merging neighboring charts as long as the fitting quality and chart compactness stay within a tolerated
range [SSGH01]. Fitting error is measured as the mean squared distance to the best-fitting plane through a chart,
while compactness is computed using the squared perimeter length (measured along the chart boundary). Within
a post-process, the boundaries of all charts are slightly rearranged to yield a straighter shape, which is beneficial
since it makes the resulting charts more compact (and hence easier to arrange inside a texture atlas). Lévy et al.
use a distance-to-feature metric for segmentation [LPRM02]. Starting the region growing procedure at points
which are local maxima of a function that measure the geodesic distance to the next sharp feature, their algorithm
effectively aligns chart boundaries with regions of high curvature.
Sander et al. presented a more advanced segmentation method within their work on Multi-Chart Geometry Images
[SWG∗03]. They account for geometric fitting and compactness during region growing through a joint fitting
error that combines, for each candidate face to be considered, the distance between to its neighbors within the
existing chart, as well as the difference between the candidate face’s normal to a global chart normal NC. This
global chart normal is the average of all faces that are currently part of a chart. Since the costs associated with all
edges of the dual graph3 of a chart depend on the choice of the seed, a challenge is to find optimal seeds that lead
to a small number of compact charts with small fitting error. After having finished the growing procedure, starting
from the current set of seeds (initially random ones), the algorithm therefore repeatedly computes a new seed
within each chart, being the face which yields the smallest distance to all other faces. The region growing process
is then restarted from the new set of seeds, until the seeds have stabilized (not changing any more or starting to
cycle between the same faces). This repeated fitting of a model (the seed face) to a cluster (a chart) and clustering
using the existing model (region growing starting from the current seeds) can be referred to as Lloyd Iteration,
and it has been used as well by Julius and coauthors in their D-Charts algorithm [JKS05]. This method uses
a more sophisticated fitting error, which is geared towards the alignment of charts with uni-axial conic surface
patches. The resulting charts are expected to be shaped like open cylinders or like the lateral surface of a cone,
since one central criterion is that the surface normals of all faces should have the same angle to a common axis,
which is entitled the Proxy. This formulation is more robust as the previously mentioned approach of tracking
an average face normal (which would become a zero vector for a perfect open cylinder, for example). In order
to always find the optimal proxy for each chart, Lloyd iterations are used (in a similar fashion as for multi-chart
geometry images). Apart from geometric fitting, additional criteria taken into account during region growing are
compactness and boundary straightness. Zhou et al. present the Iso-charts approach, which starts with an initial
segmentation of the mesh and repeatedly parameterizes and segments the charts until the parametric distortion is
below a given threshold [ZSGS04].

3In the dual graph of the mesh, faces are represented as vertices and neighboring faces are connected through an edge between those
vertices.

30

3.1. Goals & State of the Art

Seam-based approaches The aforementioned D-Charts approach by Julius et al. first produces charts where
all faces roughly share a common axis, such as the lateral surface of a cone. Such surfaces, however, may still
yield large amounts of distortion when parameterized. The algorithm therefore applies a post-processing stage
where points of high gaussian curvature, entitled as cone tips, are detected. These points are then connected
to the chart boundary through additional cuts, which, for the mentioned example of a lateral surface of a cone,
makes it possible to unwrap the cut 3D surface to the plane without distortion. Other techniques are entirely
seam-based, relying solely on the placement of cuts along the surface (not performing any labeling of faces, such
as region growing methods do). The most popular technique is probably the Seamster approach by Sheffer and
Hart [SH02]. First, vertex visibility is computed, which is then used as a heuristic to find short loops that induce
genus-reducing cuts, leading to a surface with zero genus. The method then detects points of high Gaussian
curvature, the so-called terminals, which are then connected by an approximate minimal Steiner tree that uses
the existing mesh edges to connect all terminals with approximate minimum cost. Costs of edges are defined as
a product of their length and their visibility. This leads to cuts being primarily placed along inconspicuous edges
(shadowed by other parts of the surface). This is a nice property for UV maps, since effectively hiding texture
seams in a rendered result often causes significant effort, hence it is a common goal to place them in incon-
spicuous regions up front. Poranne and coauthors directly combine seam placement and distortion-minimizing
parameterization into a single energy function, bypassing the need to indirectly estimate the resulting distortion
from surface properties such as Gaussian curvature [PTH∗17]. The result is a set of distortion-reducing seams
and an already parameterized mesh, and the method works interactively if medium-sized meshes of up to 20K
triangles are being used. However, unlike chart-based approaches such as D-Charts, the method does not offer
any control over the compactness of the result (which is a limitation it shares with the Seamster approach, for
example). In a practical setting where a compact texture atlas is desired, this may raise the need for additional
post-processing steps. Approaches based on cone singularities lower the minimum possible distortion of the pa-
rameterized surface by selecting a few points as singularities and allowing the stretch to concentrate around those
points during parameterization [KSS06, BCGB08]. These so-called global parameterization methods produce a
seamless parameterization of the manifold 3D input mesh. The parameterized surface is planar everywhere, ex-
cept for at the cone singularities. This means that the angles of the parameterization will sum up to 360◦ around
each interior vertex, and to less than 360◦ around each boundary vertex, unless a vertex is a cone singularity.
For cone singularity vertices, the sum of angles may be larger than 360◦ . Therefore, the parameterized sur-
face needs to be cut at these points before it can be unfolded to the plane. Since cuts need to go through cone
singularity vertices, the basic problem setting is identical to the one tackled by Seamster (connecting terminals
using a Steiner tree). One interesting property of singularity-based parameterization methods is that they first
parameterize the 3D surface and then allow to apply cuts in order to flatten the result, without any further change
to the parameterization, while other methods do it the other way around (cut first and parameterize afterwards).

3.1.3. Parameterization
A wide range of mesh parameterization methods has been proposed within the past decades. Summarizing all of
them would be out of the scope of this thesis, hence, within the following paragraphs, we will only look at the
most relevant related work. The interested reader is referred to existing surveys by Sheffer et al. and Hormann et
al. for a more detailed overview [SPR06, HLS07].

The goal of a parameterization algorithm for UV mapping is always to map the triangles of a 3D surface mesh to
the 2D domain. In this context, parameterizations are often classified according to the metric they are optimiz-
ing for, where one can differentiate between angle-preserving, area-preserving and isometric methods. Angle-
preserving methods, also called conformal methods, do not optimize for preservation of area or edge length,
but only for optimally preserved angles. In contrast, area-preserving methods, also called authalic methods, do
not preserve angles at all, but instead just strive to preserve the area of each parameterized triangle. Isometric

31

3. Texturing

Fig. 3.5.: Parameterization distortion. Left: Conformal method (ABF++) [SLMBy05]. Right: Isometric method
(Smith & Schaefer) [SS15].

methods account for both. They try to enforce both singular values of the matrix which describes the mapping
between the 3D triangles and the parameterized 2D versions to be exactly one. If this is the case, it means
that only rotations of triangles are performed, but no scaling or shearing. More precisely, the Jacobian J of the
parameterization function f (u) : R2 → R3 that maps from 2D space to the 3D surface is a 3× 2 matrix with
singular values σ1,σ2 that describe the scale factors of an ellipsoid. This ellipsoid characterizes, for a given point
in 2D, the degree of anisotropy of the parameterization function f , defining how it distorts the 2D coordinates
when mapped to the 3D surface. For perfect isometric mappings, σ1 = σ2 = 1. Conformal mappings preserve
angles, but not scale, therefore the result of for perfect a conformal mapping at a given point will have singular
values σ1 = σ2 = s, where s is a scale factor. Perfect area-preserving mappings keep the area of the ellipsoid
constant, but allow for arbitrary variation in scale between both of its axes, so that σ1 ·σ2 = 1. An example
for the result of an angle-preserving and an isometric method is shown in Fig. 3.5. The mesh shown in the fig-
ure lacks distortion-reducing cuts, especially in regions of high gaussian curvature (such as the ears), hence it
cannot be parameterized without significant distortion. As can be seen, the angle-preserving method allows for
strong variations in scale, but keeps the distortion in angles minimal. In contrast, the isometric method trades in
preservation of angles against a more balanced scale across the parameterized surface.

Free-Boundary Parameterization. One of the first popular conformal methods for free-boundary parameter-
ization is the Angle Based Flattening (ABF) method of Sheffer and de Sturler [SdS01]. The method first solves
for optimal 2D angles, approximating the original 3D angles, and then computes the positions of the resulting 2D
mesh by region growing. Using different constraints during optimization, the method guarantees that no triangle
flips can occur and that the resulting angles lead to a coherent 2D triangle mesh. The authors also present an
algorithm that adjusts resulting angles in order to fix self-overlaps. The popular LSCM method introduced by
Lévy et al. is a free-boundary conformal method that solves a least squares problem in order to directly compute
2D UV coordinates from the angles of the 3D mesh [LPRM02]. In contrast to ABF, the method is solving an
unconstrained optimization problem, and the authors demonstrate that it offers very fast execution times. How-

32

3.1. Goals & State of the Art

ever, triangle flips may occur4, and the resulting maps will potentially have higher distortion than those generated
via ABF. Sorkine-Hornung et al. have presented a method for bounded-distortion parameterization that segments
and parameterizes the mesh in an alternating fashion [SCOGL02]. The method uses an isometric distortion met-
ric. Combining region growing with iterative unwrapping and checks for overlaps, it guarantees an overlap-free
output with controlled maximum distortion and free boundaries. Degener and coauthors presented a combined
metric along with a user parameter that can be used to mix a conformal energy with an area-preserving term,
allowing for a custom balance between both aspects [DMK03]. Sheffer et al. presented a follow-up method of
ABF, called ABF++, which is more robust and efficient, and still easy to implement [SLMBy05]. Compared
to ABF, a new numerical solution technique drastically simplifies the system to be solved, at the cost of a few
more iterations, resulting in an algorithm called Direct ABF++. Direct ABF++ can be further sped up by using a
hierarchical variant of it (entitled Hierachical ABF++). Instead of region growing, a more robust, least-squares
solution to reconstruct the final 2D mesh (similar to LSCM) is used. An example result is shown in Fig. 3.5. Liu
et al. introduced a local-global approach to mesh parameterization, also known as As-Rigid-As-Possible (ARAP)
parameterization [LZX∗08]. The method preserves areas and angles pretty well, taking both into account during
optimization by alternating between finding optimal rotation angles for each triangle (assuming fixed triangle
shape) and finding optimal coherent UV coordinates (assuming fixed triangle rotations). Other, more special-
ized methods concentrate on the optimization towards other criteria, such as adaption to an existing 3D surface
attribute (also commonly referred to as surface signal). The Signal-Specialized Parameterization approach of
Sander et al. is an example for such a method [SGSH02]. However, we are aiming at a single texture atlas for
all attributes, usually without knowing them in advance (examples include colors, normals, occlusion and rough-
ness). For a single point on the 3D surface, the amount of detail is expected to significantly vary between the
resulting attribute maps, hence a single signal-specialized parameterization cannot account for all of them at the
same time. Therefore, we will not discuss such approaches any further in the context of this thesis.

Global Parameterization Methods. Global parameterization methods aim for a globally continuous parame-
terization, operating without any previous distortion-reducing cuts. [JWYG04, KSS06, BCGB08, MZ12]. Most
of these methods are using cone singularities to concentrate distortion at single points, which may not be planar
in the resulting parameterization. A 2D solution can then be obtained by computing a cut path that intersects all
singularities. While these methods can be used to compute UV layouts for texture mapping, they are also aiming
at applications in other fields such as quad meshing, for example, where self-overlaps in the 2D unfolding (except
for triangle flips) are not relevant [BZK09,BCE∗13]. Hence, the focus of these global parameterization methods
is typically not on the resulting 2D solution, but rather on a continuous, low-distortion parameterization of the
3D surface. Still, it is possible to make global parameterizations usable for texture mapping by making them
overlap-free through cuts in 2D, and by efficiently arranging the resulting UV charts in a texture atlas. Since
they are globally continuous, it is also possible to attach UV charts to others in 2D by gluing texture seams to-
gether. All of these optimizations have been investigated by my coauthors and me in the context of our BoxCutter
method, and they will be discussed in Sec. 3.2 and Sec. 3.3 [LVS18].

Obtaining Overlap-Free Results. Most parameterization methods guarantee that the result does not contain
any triangle flips, sometimes referred to as local overlaps, but so-called global overlaps are still possible in many
cases. This is a serious problem for practical applications like texture mapping, where 2D overlaps usually cannot
be tolerated. The early ABF method of Sheffer and de Sturler contained a proposal on how to analyze overlaps
of the resulting parameterization and how to remove them by repeatedly parameterizing with adapted parameters

4See the errata on the LSCM project page: http://alice.loria.fr/index.php/publications.html?redirect=1&
Paper=lscm@2002

33

http://alice.loria.fr/index.php/publications.html?redirect=1&Paper=lscm@2002
http://alice.loria.fr/index.php/publications.html?redirect=1&Paper=lscm@2002

3. Texturing

[SdS01]. Smith and Schaefer presented an algorithm that starts from a fixed-boundary parameterization (vertices
pinned to a circle), always guaranteeing that the parameterization does not contain any flips or overlaps. From the
fixed-boundary starting point, the algorithm gradually evolves to a low-distortion solution with free boundaries
(without any guarantees for finding a global minimum) by minimizing not only isometric distortion, but also
a boundary energy metric that pushes UV boundary vertices away from other UV boundary edges, thereby
preventing any self-overlaps. A faster variant has recently been presented by Jiang and coauthors [JSP17]. Instead
of using an explicit boundary energy term, their algorithm tessellates the empty space around charts, making sure
that (real and fake) triangles do not degenerate, effectively preventing any flips or self-overlaps. Although these
methods for direct parameterization without overlaps are useful in many scenarios, they must in general trade
in a potentially much higher amount of distortion in order to achieve an overlap-free solution. In addition, such
methods aware of global overlaps are generally slower than unconstrained methods that only prevent triangle flips
(local overlaps). Methods that simultaneously segment and parameterize a mesh may prevent global overlaps
locally, whenever they occur [SCOGL02, PTH∗17]. However, this efficient localized solution comes at the cost
of longer boundaries in the final result, compared to methods that exploit global knowledge about the topology
of the mesh. In practice, using a result that is free of flips as a starting point and resolving globally overlapping
parts by cutting the resulting 2D mesh during a post-processing step is a common solution. This method has
also been used by Lévy et al. in their seminal paper on LSCM [LPRM02]. While the method is straightforward
and leads to overlap-free solutions, it only operates locally (at borders of overlapping regions), not incorporating
global knowledge about the mesh topology and therefore producing non-optimal results. Apart from obtaining
an overlap-free layout, goals of the cutting process are a minimal length of cuts applied and a small number of
resulting charts, which the method of Lévy et al. does both not take into account. In the context of our BoxCutter
method, my coauthors and me have presented an approach towards overlap removal that explicitly minimizes
the length of the resulting cuts, placing them in non-obvious locations by exploiting global knowledge about the
topology of the 2D mesh [LVS18]. By performing a graph cut optimization with weighted edges, the algorithm
is also able to penalize cuts which go through visually important regions. We will investigate this method more
in detail within Sec. 3.2.

3.1.4. Atlas Packing

Classical methods for arranging a set of 2D UV charts inside a texture atlas used the axis-aligned 2D bounding
box of each chart in order to approximate its shape during packing. The UV charts may be rotated beforehand
in order to obtain the most efficient (i.e., most compact) axis-aligned box. Such a box-based method allows
for very straightforward and efficient implementations, at the cost of a potentially smaller resulting packing
density [SSGH01]. The first popular free-boundary packing algorithm in the context of texture mapping has
been proposed by Lévy et al. within their LSCM paper [LPRM02]. Their Tetris algorithm inserts rasterized
charts from top to bottom into the 2D working space, tracking, at each steps, collisions with the existing atlas and
dropping the current chart always from the horizontal location that allows for the most efficient packing, defined
as the one that leads to the smallest amount of wasted vertical space between the current chart and the existing
ones. This method is fast and efficient, as it operates with a 1D horizon of height values along the horizontal
axis. Sander et al. extend this approach by considering 16 different possible orientations of each chart during
packing [SWG∗03]. They also consider unused vertical space between the upper and lower boundary of each
new chart as wasted space, since this wasted space could be potentially reduced if another chart orientation would
be selected. Furthermore, their method supports non-square atlases. Nöll and Stricker have extended this method
of Sander et al. by using insertion from multiple directions, also tracking inner boundaries. Furthermore, their
approach includes a clever variant that allows for modulo packings, wrapping parts of a chart around the atlas.
This is especially useful when real-time rendering pipelines are being used, where such wrapping functionality
is available through standard features of common graphics hardware. Recently, my coauthors and me presented

34

3.1. Goals & State of the Art

a novel method for efficient atlas packing, in the context of our work on the BoxCutter approach [LVS18]. The
approach uses a hierarchical representation of the rasterized working space in order to quickly accept or reject
placement candidates, considering different rotations and translations. The method will be discussed more in
detail within Sec. 3.3.

3.1.5. Texture Baking
As the final step of an automatic texturing process, the Texture Baking stage generates the content of the actual
texture images. This is done by using an already existing texture atlas for the low-resolution mesh to sample the
high-resolution surface attributes into the locations of the packed UV charts (see Fig. 3.1). The challenge in this
context is the robust computation (or maintenance) of correspondences between points on the low-resolution and
high-resolution surfaces. Cohen et al. simply parameterize the high-resolution mesh, generate texture maps by
sampling the 3D surface attributes into the 2D texture images, and then simplify the textured mesh while striving
to preserve texture coordinates during simplification [COM98]. While this texture baking method is trivial and
does not need any correspondence information between the high-resolution and low-resolution meshes, it requires
the application to parameterize the high-resolution mesh, which can be computationally expensive. Furthermore,
the simplification algorithm is constrained through the minimization of texture-space deviations. Cignoni and
coauthors sample the textures for the low-resolution mesh by detecting, for each texel, the point on the low-
resolution surface and establishing a correspondence to the high-resolution mesh via a search of the nearest
point [CMR∗99]. To filter out wrong correspondences that may occur for thin parts of the surface, the surface
normals at each of the two samples (high-resolution mesh and low-resolution mesh) are computed and compared.
In order to accelerate the search for the closest point, the method uses a regular 3D grid, into which all triangles of
the high-resolution mesh are scattered, enabling a fast spatial search. Sander et al. have extended the approach of
Cignoni et al. by showing that a normal shooting approach can produce better approximations than sampling of
closest points [SGG∗00]. The normal shooting algorithm follows rays along the direction of the surface normal
of the low-resolution mesh, selecting the closest intersection with the high-resolution mesh as a correspondence.
In general, using two different, spatially aligned meshes without any correspondence information and quickly
establishing such correspondences on the fly during texture baking, with the help of a spatial data structure, is
already a standard approach that is producing good results in practice.

35

3. Texturing

3.2. Overlap Removal with Approximately Minimum Cuts

In order to automatically texture simplified 3D meshes, using data from a high-resolution original, an overlap-
free UV atlas is necessary. Having an atlas that contains UV overlaps would mean that a single location in the
texture images is mapped to different parts on the 3D surface. For artificial 3D data such as game characters, this
property can sometimes be beneficial (imagine situations like two symmetrical parts with identical texture). In the
context of fully-automatic 3D scan optimization, however, this case is usually not assumed to occur. Instead, the
aim is to assign each location on the 3D surface an individual location in 2D image space. For parameterizations
that map a single disk-topology 3D surface mesh to a 2D mesh with identical topology, this property is often
called a bijective parameterization. However, if the 3D surface is cut into different charts in 2D UV space, the
mapping is actually not bijective at the UV seams, therefore we will not use this terminology in the context of
UV atlases within this thesis, but we will instead simply use the term overlap-free.

Parameterization methods that are guaranteed to generate overlap-free results, such as the one by Smith and
Schaefer, may introduce an uncontrollable, high amount of distortion in order to fulfill this guarantee [SS15].
Therefore, such methods may not be considered the best solution for this problem. Instead, a common solution in
practice is to resolve the global self-overlaps of each 2D chart in a postprocessing stage, introducing cuts through
the charts and this way separating the previously overlapping pieces in 2D UV space. The newly introduced cuts
should be as short as possible, since UV seams are preferably kept short, for various reasons (see Sec. 3.1.2).

Within this chapter, we will explore a new approach towards overlap removal in UV atlases. It has been proposed
by my coauthors and me in the context of our BoxCutter method [LVS18]. The method uses a graph cut algorithm
to separate self-overlapping 2D charts into multiple resulting pieces that are each free of self-overlaps. Moreover,
for globally continuous parameterizations, it is able to favor seam-separating configurations that allow for 2D
welding operations in a post-processing step. This may even produce overlap-free results that, in the end, have a
shorter boundary than the original, self-overlapping input. Finally, the method is able to account for importance
weights on the vertices of the 3D mesh, which promotes overlap-removing UV cuts in inconspicious regions.

3.2.1. Overlap Removal using a Graph Cut Algorithm
To eliminate UV overlaps using a small amount of cuts, we will cast overlap removal as a multi-cut problem
on a special kind of weighted graph. Algorithms solving this problem, also known as correlation clustering,
compute a minimum amount of cut edges that separate nodes into a new set of disconnected subgraphs (or
clusters). Positive edge weights increase the chance of two nodes ending up in the same cluster, while negative
edge weights encourage separation into different clusters. The output of the algorithm are labels ye ∈ {0,1},
indicating which graph edges e should be cut to form the resulting subgraphs (clusters).

Fig. 3.6.: 2D chart (left) and graph rep-
resentation (right).
(Image: [LVS18])

A simple example for a 2D UV chart with overlaps, as well as for the
graph on which we operate, is shown on the right. The graph contains
all nodes of the dual graph of the mesh. The nodes of the dual graph
represent the mesh triangles, and the edges of the dual graph represent
adjacency relationships between neighboring triangles, sharing a mesh
edge. For example, the triangles numbered as 1 and 2 are neighbors
in the mesh, therefore they are connected through an edge inside the
graph, which has a positive weight. In addition to the dual graph, the
graph on which we will solve the multi-cut problem will be enhanced
by some additional edges, which do not exist in the real 2D mesh.
Those additional edges are used to add cutting constraints that arise from the overlaps. In the example, triangles

36

3.2. Overlap Removal with Approximately Minimum Cuts

0 and 4 are not neighbors, but they are overlapping. Therefore, they are connected inside the graph representation
through an additional edge with large negative weight.

Having additional graph edges with large negative weight will force overlapping triangles from the 2D input
to separate during the clustering process. However, while the other triangles are kept together through positive
weights, the overlap-separating cuts will be placed along shortest paths that separate the respective pieces. We
will also use additional graph edges with negative weights for triangles on opposite sides of a seam. More
precisely, the weights used for the respective edges are defined according to the following rules:

• Overlap Removal: Assign -infinity to all pairs of overlapping triangles.

• Mesh Coherence: Assign l/lavg to pairs of triangles sharing an interior mesh edge with length l.

• Seam Separation: Assign weights of −l/lavg to opposing triangles along each seam.

The purpose of the seam separation rule is to favor cuts which separate the two parts of each seam. This rule
only applies to globally continuous parameterizations, where the 2D boundary segments associated with each 3D
seam are always rigid transformations of one another in 2D space - an example is shown in Fig. 3.7. While we
cannot close seams that only exist within a single 2D chart, we may potentially close entire UV seams when both
parts belong to different charts, effectively welding charts together and therefore reducing the overall length of
the boundary (we will discuss this more in depth in Sec. 3.2.2). Therefore, we try to promote such configurations
during the cutting stage, using the seam separation rule. To avoid the separation of single triangles adjacent to
seams into small individual charts, we choose the negative weight for seam separation and the positive weight
for mesh coherence to be both based on the length of the mesh edges. This safely avoids the separation of
single triangles, due to the triangle inequality (i.e., the sum of the region coherence weights on the two sides of
a non-degenerate triangle will always outweigh the seam separating weight on the third side).

Having all edge weights at hand, we compute the minimum-weight graph cut using the extended Kernighan-Lin
algorithm proposed by Keuper et al. [KLB∗15,KL70]. As a result, we obtain edge labels ye, telling us if an edge
should be cut (ye = 0) or not (ye = 1). Finally, by performing these cuts, we obtain the desired set of charts,
which just need to be rearranged inside the atlas in order to yield a valid overlap-free solution.

3.2.2. Chart Welding

Fig. 3.7.: Welding charts along a
pair of seams.

In general, each seam on the 3D mesh corresponds to a pair of seams in 2D.
Those seams may be part of the same chart, or they may belong to different
charts. For globally continuous parameterizations, 2D seams within a pair
are always identical up to a rigid transformation. This means that if the two
2D seams within a pair belong to different charts, we can weld them together
by simply translating and rotating one of the two charts in such a way that
the pair of seams is perfectly aligned. An example is shown on the right.

The aim of the welding process is to reduce the boundary length as much as
possible. Since the chart welding process may produce overlaps, which we
want to avoid, we have to test the result accordingly before finally applying
a welding operation. This is done by working on a copy of each of the
two charts, performing the welding step and then checking for boundary
overlaps. Welding together charts within the entire atlas is then done in a
greedy fashion: Always picking the longest seam edge that does not produce
a boundary overlap and welding it together, the process can be repeated until all seam edges are either closed or
producing a boundary overlap during welding. Another aspect that must be taken into account, however, is the

37

3. Texturing

Fig. 3.8.: Overlap removal and chart welding, using a globally continuous parameterization [Lip12]. After re-
moving overlaps from the input (left), using graph cuts with seam-separating weights, resulting charts
(center) can be welded along matching UV seams, since the parameterization is globally continuous.
The welding stage produces an overlap-free result with short boundaries (right). (Image: [LVS18])

Fig. 3.9.: UV overlaps are removed from an input parameterization (a). Importance weights (b) can be used
to bias cut placement towards non-important regions. In contrast to unconstrained cutting (c), the
importance-weighted method (d) leaves important regions intact, at the cost of longer boundaries.
(Original Image: [LVS18])

packing efficiency of the result. While the welding stage may drastically reduce the 2D boundary length within
the atlas, it can lead to charts with arbitrary, complex shape. We may not be able to efficiently pack such charts
together into the atlas, therefore we will add another termination criterion for this case. In summary, the welding
process stops if

• the packing efficiency of the result would drop below a given threshold,

• no seams can be welded together any more without overlap, or if

• there is only a single chart (no weldable seams left).

An example for overlap removal and subsequent welding is shown in Fig. 3.8. As can be seen, chart boundaries
resulting from the graph cutting process are not aligned with the overlapping regions, as it would be the case
for more straightforward methods (cp. [LPRM02]). Instead, the overlap removal and seam separation rules
encourage the formation of larger charts that can be welded together, in this example resulting in a single, large
chart that is compact and, at the same time, does not have any overlaps.

3.2.3. Protecting Important Regions
Since the graph cut algorithm used for overlap removal works with arbitrary edge weights, these can easily be
modified in order to account for additional criteria when computing optimal cut locations. One crucial aspect

38

3.2. Overlap Removal with Approximately Minimum Cuts

Model [Method] BLen Increase (Pack. Eff.)
[Lévy et al. 02] Overl. Cut Welded

beethoven [SH02] +76% (62%) +13% (59%) +13% (59%)
bunny [SH02] +47% (57%) +17% (62%) +17% (62%)
feline [SH02] +58% (48%) +14% (54%) +14% (54%)
gargoyle [SH02] +30% (54%) +15% (55%) +15% (55%)
aircraft [Lip12] +70% (71%) +25% (68%) +7% (68%)
cup [Lip12] +37% (81%) +42% (71%) –13% (69%)
blade [BCW17] +35% (43%) +22% (60%) +16% (55%)
cow2 [BCW17] +70% (56%) +23% (65%) +16% (64%)
ramses [BCW17] +35% (58%) +18% (56%) +18% (58%)
camel [BCE+13] +92% (61%) +26% (57%) +8% (49%)
aircraft [MPZ14] +57% (64%) +12% (66%) +1% (58%)
santa [MPZ14] +58% (60%) +15% (66%) –1% (61%)
beetle [LZ14] +66% (40%) +24% (66%) +14% (65%)
bozbezbozzel [LZ14] +92% (64%) +29% (65%) +15% (60%)
Min. +30% (40%) +12% (54%) –13% (49%)
Max. +92% (81%) +42% (71%) +18% (69%)
Average +59% (59%) +21% (62%) +10% (60%)
Median +58% (59%) +20% (63%) +14% (60%)

Tab. 3.1.: Boundary length increase through overlap removal (smaller is better), using [LPRM02] and using the
proposed new method. Models from the first section (cut using [SH02]) do not have globally contin-
uous parameterizations, hence no welding is possible. Models from the second section use globally
continuous methods [Lip12, BCW17, BCE∗13, MPZ14, LZ14].

in practice is always to place UV seams away from important regions. The Seamster algorithm, for example,
computes visibility scores for each vertex and then propagates scores to edges, preferring to place cuts in incon-
spicuous regions of the 3D model [SH02]. Similarly, having per-vertex importance scores, we can easily derive
importance values for mesh edges by simply averaging the importance values of the two vertices belonging to a
mesh edge. Those values can then be used as a weighting factor for the existing edge weights between triangle
nodes within the graph, which introduces a respective bias into the graph cutting procedure.

An example is shown in Fig. 3.9, listing also packing efficiency (PE) and UV boundary length (BL). As can be
seen, the visually important regions of the 3D mesh left untouched, while the algorithm still manages to resolve
all overlaps. Since the biased cuts on the 2D UV mesh are not any more optimized to have minimum-length,
the resulting UV boundaries, while avoiding important regions, will typically be slightly longer (as shown by
example in the figure).

3.2.4. Results & Discussion
The proposed method for UV overlap removal was evaluated on a set of test models, parameterized with differ-
ent methods. Furthermore, a comparison against the local cutting method Lévy et al. has been performed. Since
the aim of the overlap removal algorithm is to resolve all UV overlaps with a minimum increase in boundary
length, this metric has been measured for both of the evaluated methods. For the new proposed method, we have
also evaluated the total increase in boundary length after chart welding, where applicable (globally continuous
parameterizations). Results are shown in Tab. 3.1. As can be seen, the average increase in boundary length is

39

3. Texturing

Fig. 3.10.: Removing overlaps from a parameterization. Left to right: input, overlaps removed using the standard
method of Lévy et al. [LPRM02], overlaps removed using the proposed method. (Image: [LVS18])

significantly smaller for the new method, compared to the standard approach of Lévy and coauthors. Parameter-
izations without global continuity, shown in the top section of Tab. 3.1, were cut using the Seamster method and
then parameterized using ABF++ [SH02, SLMBy05]. For these data sets, where no chart welding was possible,
the seam separation rule has not been applied during the overlap removal process. As a result, the results of
the cutting process are constantly and significantly better than for the standard method. For globally continuous
parameterizations, shown in the second part of the table, the results of the cutting process were significantly bet-
ter in almost all cases, with one exception, which is the cup model parameterized by Lipman’s method [Lip12].
Here, the standard method led to an increase in boundary length by 37%, while the proposed method (using the
seam separation rule) led to an increase of 42%. However, as previously illustrated in Fig. 3.8, the welding stage
is so efficient on this model that it forms a single, large chart out of the charts resulting from overlap removal.
What is notable about this result is that the boundary length increase of 42% has been reduced to -13%, meaning
that the boundary of the overlap-free result is actually shorter than it has been in the overlapping input data set.
A similar result can be observed for the santa model, where the application of the proposed method for overlap
removal leads to a small decrease in boundary length, thanks to the welding stage (1%).

Another interesting aspect is the effect of the cutting process on packing efficiency. Measuring packing efficiency
on an input atlas with UV overlaps may not too useful, therefore the proposed algorithm considers packing
efficiency after the cutting stage. The decrease in packing efficiency is then controlled during the welding stage,
solutions that lead to a decrease of more than 10% through chart welding are discarded. Compared to the standard
method, the packing efficiency of the resulting charts therefore remains in a similar range (59% on average for the
standard method, 60% for the proposed method). Visual results for three of the test data sets (feline, blade, beetle)
are shown in Fig. 3.10, listing, for both methods, the resulting packing efficiency (PE) and boundary length (BL).
As can be seen, the proposed method produces larger, more coherent charts than the standard approach, while
still maintaining a good packing efficiency.

40

3.3. BoxCutter: Cut-and-Repack Optimization for UV Atlases

3.3. BoxCutter: Cut-and-Repack Optimization for UV Atlases

One important property of a texture atlas is that is compact. Concretely speaking, this means that the packing
efficiency (PE) of the UV charts inside the 2D domain (usually a square or a rectangle) must be maximized.
Packing efficiency is typically measure in percent, being the ratio of the area of all UV charts to the area of the
2D domain (see [SWG∗03,NS11]). Having a UV atlas with high packing efficiency means that we can efficiently
exploit available GPU memory for texture data. In contrast, any empty space within a UV atlas will correspond
to a wasted area of memory which does not store any useful information. Similar observations can be made
for manufacturing scenarios: when using an automatic process for 2D layout and subsequent cutting of sheet
material, one important goal in practice is to minimize waste, arising from unused, irregularly shaped parts of a
sheet, which are too fragmented to be useful for further processing [KHLM17].

Within this section, we will investigate a new method for the creation of compact atlases, entitled BoxCutter,
which has recently been published by my coauthors and me [LVS18]. The algorithm takes as input an unopti-
mized UV atlas, possibly with UV overlaps. After resolving overlaps (using the method presented in Sec. 3.2),
it analyzes possible cut locations inside the 2D atlas and subsequently finds optimal cuts, leading to the largest
improvement in packing efficiency while, at the same time, keeping the increase in boundary length at a moderate
level. The BoxCutter algorithm uses several strategies to prevent the formation of tiny pieces, to favor a desired
aspect ratio for the resulting atlas, and to honor cuts through regions that are visually less important. Along with
this cut-and-repack strategy, we will also investigate a novel atlas packing algorithm, which has been proposed in
the context of BoxCutter. We will then explore the results on a large test data set and compare them to Dapper,
a state-of-the art method that compacts 3D and 2D layouts for efficient packing. Results for two examples, a 3D
character model and an unfolding of a simple 3D shape for manufacturing, are shown in Fig. 3.11.

3.3.1. Void Spaces and Compacting Cuts
Computing charts that are allow for an efficient packing is known to be computationally hard [CZL∗15]. A
common approach in prior art has been to rely on geometric proxies, or properties of individual charts, as the
means to predict packing efficiency. One commonly used proxy is chart compactness (convexity and roundness)
[SWG∗03, ZSGS04]. However, this is not a reliable proxy, since, in many situations, both compact and highly
non-compact charts with comparable boundary lengths can be packed with equal efficiency. An example is shown
in Fig. 3.12. Similarly, pyramid-shaped geometries often allow for efficient packing (see [CZL∗15]), but one can

Fig. 3.11.: Traditional texture atlas generation frameworks, such as the one of Poranne et al. [PTH∗17] (a), pro-
duce results which can have low packing efficiency and are not necessarily overlap-free (see inset).
BoxCutter produces an overlap-free atlas with the same parametric distortion and higher packing ef-
ficiency by cutting and repacking the original UV charts (b). The framework can also be used to
efficiently pack 2D patterns for fabrication (c-d). (Image: [LVS18])

41

3. Texturing

Fig. 3.12.: Compactness versus packing efficiency: Packing compact, rather convex charts produced by
VSA [CSAD04] (a) produces an atlas with the same packing efficiency as for the much less com-
pact charts produced by D-Charts [JKS05] (b), which have shorter boundaries. BoxCutter refines
the D-Charts atlas (b) to produce a new solution (c) with high packing efficiency, yet still shorter
boundaries than the charts generated via VSA (a). (Image: [LVS18])

easily find examples where this is not the case. For example, the maximum packing efficiency of any individual
triangle inside a rectangular domain is just 50%.

Instead of looking for indirect proxy properties that make charts amenable for efficient packing, the BoxCutter
method derives locations of new cuts in UV space by evaluating actual packing solutions. This direct approach
has the benefit that it is perfectly clear how well the charts can be packed after cutting, using a given packing
algorithm. On the other hand, it requires an efficient packing algorithm, since the evaluation of cut candidates
should not take away too much processing time. Concretely speaking, when evaluating 50, 100 or even more
possible cut locations during the UV atlas optimization process, a single pass of chart packing should be per-
formed within a second or less. Luckily, there are real-time algorithms that deliver good packing results (we will
briefly discuss one of them within Sec. 3.3.3), so the direct approach taken by BoxCutter, evaluating resulting
packings directly instead of relying on a proxy metric, is definitely feasible.

Fig. 3.13.: Large void boxes (grey) imply useful
cut locations (dashed).
(Image: [LVS18])

Cuts from Void Boxes. One approach to generate cut
candidates inside an existing UV layout, which can then
be evaluated in order to compact the atlas by using the
most efficient cut, would be the use of random cut loca-
tions. However, this method would not be very efficient,
as it does not exploit any knowledge about that atlas. In
order to deliver good results, this would make a high num-
ber of random samples necessary, drastically increasing the
runtime of the algorithm. BoxCutter, in contrast, combines
several strategies that lead to cut candidate locations which
are very likely to significantly increase packing efficiency,
introducing only a moderate increase in boundary length. Specifically, this strategy is based on the detection of
large, axis-aligned void boxes, which are then used to derive meaningful cut candidates. An example is shown
in Fig. 3.13. Given a packed atlas, the locations of the unused empty spaces - or voids - are well-suited to derive
cut candidates that will help us to improve the packing efficiency inside the atlas. In particular, the side lines

42

3.3. BoxCutter: Cut-and-Repack Optimization for UV Atlases

a) voids detected b) cut performed d) packed c) void collapse

?

Fig. 3.15.: Compacting cut: a) detected maximal void boxes; b) pair of cut lines derived from one of the void
boxes and associated supporting chart (green); c) conceptual collapsing of the void box after removal
of the supporting chart; d) a more efficient packing achieved using these cuts. (Image: [LVS18])

of rectangular axis-aligned voids, or void boxes, are strongly suggestive of cut locations that improve packing
efficiency. By extending these side lines, we obtain a collection of refined charts that can often be rearranged
to form a more efficiently packed atlas (see Fig. 3.13). The BoxCutter method therefore uses such void box
elimination steps as the core operation of the optimization framework.

Fig. 3.14.: Local and global cuts on the horse model.
For the atlas shown in (a), and a global cut
(b) is outperformed by a local one (c).
(Image: [LVS18])

Global Cuts and Conceptual Void Collapse. By de-
riving global cut candidates (such that are going through
the whole atlas) from void boxes, BoxCutter directly fa-
vors the cuts that will help to remove, or collapse, such
voids. The method specifically focuses on axis-aligned
maximal void boxes - boxes whose sides are aligned
with the sides of the bounding box of the atlas. Those
boxes furthermore contain no atlas triangles, and their
size cannot be further increased without intersecting an
atlas chart, as shown in Fig. 3.15, for example. The axis-
aligned lines that coincide with the sides of these boxes
provide possible cut candidates, or cut lines, for pack-
ing improvement, since, from a conceptual point of view,
they allow to collapse void space. For voids immediately
next to bounding box corners, we have one cut line in
each direction; for voids next to bounding box sides, we
have one cut line in the direction of this side and two in
the other; and for interior voids we have two lines in each
direction. We can observe that these lines bound a subset
of charts, which we call the supporting charts (Fig. 3.15b). If we cut through the UV atlas along one of these
pairs of lines and remove the supporting charts, then the packing efficiency of the remaining atlas can be trivially
improved by collapsing the resulting empty space and moving the top line, and all portions of the atlas on top
of it, so that the top and bottom lines coincide (Figure 3.15c - the same principle applies to vertical cuts and
coinciding left / right lines, of course). As soon as a void box has been collapsed, we can repack the removed
supporting charts, potentially obtaining a much more compact solution since a large part of void space has been
eliminated. In practice, BoxCutter never explicitly collapses a void box, but always repacks all charts within
the atlas, in order to allow for more efficient placement of the supporting charts. However, the concept of void

43

3. Texturing

Fig. 3.16.: Local and global cuts, as derived from local (yellow) and global (gray) void boxes. Left: axis-aligned
chart and respective void box. Right: global layout, including the chart from the left. Both boxes
induce cuts that may improve packing efficiency. (Image: [LVS18])

collapses, as illustrated within Fig. 3.15, helps us to understand the motivation for deriving atlas-compacting cuts
from void boxes.

Tightest BBox

Optimally Aligned

(Image: [LVS18])

Local Cuts. The effectiveness of the global approach outlined above diminishes when
no large voids exist inside the atlas. In such cases, global cuts, which usually cross mul-
tiple charts inside an atlas, may lead to extensive boundary elongation with possibly only
a small improvement in packing efficiency. At the same time, we can observe that the
overall packing quality of a UV atlas is often affected by the compactness of individual
charts, namely how efficiently an individual chart is packed inside of its own oriented
bounding box (Figure 3.16, Figure 3.14a). While an atlas packing method can often
pack smaller charts within the void spaces surrounding charts with low compactness,
eliminating these voids directly can often dramatically improve the overall packing ef-
ficiency (Figure 3.14c). Therefore, BoxCutter detects void boxes not only globally, but
also on a per-chart level, to evaluate a set of so-called local cut candidates. Specifically,
local cuts are applied to individual charts, after deriving them from maximal void boxes
inside the oriented bounding box of each chart. In general, the tightest bounding box for
a chart would provide the best packing efficiency for this individual chart; however, this
is not our goal. Instead, an orientation that maximally aligns the sides of the chart with
the axis directions is a better alternative, since it is likely to align the sides of the max-
imal concavities on the chart with the major axes, resulting in cuts that produce charts
which are both convex and boxy and hence better suited for packing (see example on the
right). The BoxCutter method computes a suitable local chart orientation by locating the orthogonal coordinate
system whose edges are best aligned with the directions of the chart boundaries. Specifically, it minimizes the
L1 norm of the boundary edge vectors over all possible rotation angles α:

E(α) = ∑ |u1(α)|+ |v1(α)|+ ...+ |un(α)|+ |vn(α)|.

Here, {(u1,v1), ...,(un,vn)} are the rotated boundary edge vectors. A straightforward approximate solution for
the desired chart alignment can simply be obtained by testing several rotation angles. This process is rather
fast, as we only need to consider the boundary edge vectors of a chart (instead of explicitly rotating the whole
chart). Minimizing E(α) optimizes the alignment between the global boundary directions and the major axes.
However, raw chart boundaries can contain high-frequency details, which may have unwanted effects on the

44

3.3. BoxCutter: Cut-and-Repack Optimization for UV Atlases

Fig. 3.17.: BoxCutter overview: Overlaps in the input (a) are resolved, leading to an overlap-free parameteriza-
tion (b). The main stage of the algorithm repeatedly cuts and repacks charts, producing an atlas with
high packing efficiency (PE) and controlled maximum boundary length (BL) (c). (Image: [LVS18])

result. These details can be ignored in the computation by pre-smoothing the raw edge direction vectors, using a
simple averaging of the immediate neighbors of each edge vector.

Fast Location of Void Boxes. Having motivated the detection of large void boxes inside an existing atlas, in
order to derive local and global cuts, the question arises how those void boxes should be detected in practice.
One option would be to try different possible seed locations and grow the sides of the boxes towards all four
principal directions. However, this random process wouldn’t ensure that we really obtain the largest possible
void boxes. Also, growing a side of a box in continuous space would mean that we would need to compute the
first intersection for each of the respective line segments with all potentially intersected chart boundary edges,
which is a rather complex and time-consuming procedure. Because of these reasons, the BoxCutter algorithm
takes a different approach, operating in a discrete, rasterized working space. As will be seen later (Sec. 3.3.3),
rasterized versions of the charts inside the UV atlas will also be used for efficient packing. Therefore, reusing
this data for detection of maximum void boxes is a very efficient approach. Given a rasterized representation
of either the entire atlas (global case), or of an individual chart (local case), the BoxCutter algorithm uses a
simple axis-aligned scanline algorithm to locate the largest void boxes. For each pixel, the number of subsequent
empty pixels in the horizontal direction is computed and stored inside a skip buffer, having the same size as
the rasterized atlas. This allows to efficiently compute, for each empty pixel, the largest possible void box. The
actual detection of maximum void boxes is then performed by iterating along a line over the vertical direction (up
and down) until non-empty pixels or the chart boundary are reached, while tracking at the same time the largest
possible horizontal extent using the skip buffer. All maximum empty boxes with size above a given threshold
are recorded in a list. As this list may contain overlapping boxes, those get filtered out by first sorting the list of
boxes by size and then, for each entry, visiting all subsequent entries and deleting any box that has more than
a 10% of overlap. The result is a sorted list of void boxes with maximum possible extent and minimal or no
overlap; no box in the list can increase in size without intersecting a chart (Fig. 3.16). BoxCutter then selects the
n largest void boxes to induce axis-aligned vertical and horizontal cuts as cut candidates.

3.3.2. Cut-and-Repack Algorithm
After detecting void boxes, allowing to derive local and global cut candidates, the BoxCutter algorithm repeatedly
performs cut-and-repack steps in order to produce an optimized, compact atlas with only a moderate increase in
boundary length. Within this section, we will investigate this core part of the method, including several important
optimization strategies.

General Overview. To process raw atlases generated by popular parameterization techniques, which may not
be overlap-free, BoxCutter initially removes overlaps and performs chart welding where applicable, using the

45

3. Texturing

Fig. 3.18.: Optimizing an input parameterization (a), BoxCutter can terminate at different boundary length bud-
gets (b-d), as well as prevent (b-d) or allow (e) the creation of small pieces. (Image: [LVS18])

method described in Sec. 3.2. It then repeatedly executes the cutting and packing steps until no further improve-
ment is possible without violating user constraints. This high-level conception of the algorithm is illustrated in
Fig. 3.17. The input to each cut-and-repack step is a packed atlas, with a given packing efficiency p and total
boundary length b. BoxCutter first detects n local and n global cut candidates (n = 4 each) by locating the largest
void boxes in either the current atlas (global case) or in the oriented bounding boxes of the current charts (local
case). Depending on the location of the respective void box (near an edge or centered), one or two cut lines are
generated. The algorithm then optimizes and ranks the 2n candidate cuts and selects the best one, according to
a score that incorporates resulting the packing efficiency and boundary length. To perform the actual cut, Box-
Cutter splits the affected charts along the cut lines, retriangulates charts along the cut lines if necessary (in 2D
and 3D), and fixes any introduced T-Junctions. The algorithm then repacks and the new set of charts, leading to
the input for the next iteration (or to the final result, in case the algorithm terminates). To allow for an efficient
implementation of packing, detection of void boxes, and approximate computation of UV atlas properties such as
packing efficiency, BoxCutter uses rasterized representations of the charts for different kinds of tasks throughout
the algorithm.

User Constraints. BoxCutter allows the user to constrain the amount of boundary elongation allowed, specify
a minimal acceptable size for the resulting charts, bias cutting to avoid user-specified “no-cut” areas, put a
time limit on the computation, or simply let the method run until no further improvement is possible. (e.g.
Figures 3.18, 3.22). In the latter case, the algorithm will terminate when a fixed number of attempts does not
improve packing efficiency by more than a given minimum improvement pε.

BL(loc)

cut locations

(Image:
[LVS18])

Optimizing Cut Locations. The decision to derive cuts from maximal voids is driven by
packing efficiency; however, one may also wish to account for boundary length when consider-
ing the choice of cuts. We can note that minor axis-aligned shifts in the cut line locations can of-
ten significantly reduce the cut length, and help avoid formation of tiny charts (Figure 3.18,de).
For each pair of candidate cut lines obtained, the BoxCutter method consequently performs a
local line search which computes a location that minimizes the resulting cut lengths. This is
done by define a range of evenly spaced offsets within 5% of the corresponding bounding box
dimension, and explicitly evaluating the resulting boundary lengths for several cuts within this
range. Since the computation is very simple and fast (intersection with an axis-aligned line),
BoxCutter uses a dense set of 100 equally distributed offset samples. The algorithm then select
the location with the best score (see following paragraph). Note that if the line does not cut any

46

3.3. BoxCutter: Cut-and-Repack Optimization for UV Atlases

charts, then the operation will have no impact on the packing. BoxCutter thus always selects cut lines that cut
across at least one chart.

C0 C1

a) Candiates b) Result of C0 b) Result of C1

Fig. 3.19.: A cut candidate with shorter cut length, de-
rived form a large void (a), may still lead to
a less efficient packing (b) than another cut
with lower score (c). (Image: [LVS18])

Ranking Cuts. The impact of any candidate cut de-
pends on our ability to efficiently re-incorporate the
removed support charts into the atlas. Thus our esti-
mate of candidate cut optimality is only an estimate
- it may be that a less promising cut may outperform
a more promising candidate - an example is shown
in Fig. 3.19. Instead of greedily applying the most
promising cut, BoxCutter assess all 2n possible can-
didate cuts by executing each of them, computing a
new packing, and computing its packing efficiency p.
In addition, rather than directly selecting the cut that
maximizes packing efficiency, the algorithm seeks to
balance efficiency against boundary elongation. It therefore computes the score of a given cut as s = p

bα , where b
is the boundary length, p is the packing efficiency (measured in the rasterized space). All examples shown have
been generated using α = 0.2. After optimizing initial cut locations, as derived from void boxes, by using a local
line search (previous paragraph), the cut-and-repack algorithm simply ranks all cut candidates and performs the
cut with the highest score s.

Smin

(Image:
[LVS18])

Preventing Small Charts. Small charts can negatively affect several kinds of target
applications. They may, for example, require an inappropriately large amount of gutter
space for rendering, compared to their area, and they are hard to manipulate in fabrication
settings. Unconstrained cuts, even after local cut optimization, may result in small charts
being produced. BoxCutter therefore explicitly prevents the formation of small charts by
adding a respective constraint to the cutting step and, likewise, to the cut evaluation during
cut optimization. The algorithm checks each new chart resulting from a cut to determine
whether its extent, measured by orthogonal distance to the cut line, satisfies a minimum
size threshold smin. If this is not the case, the respective segment of the cut line is ignored,
leaving its particular region uncut. An example is shown on the right. Fig. 3.18e shows
the effect of setting smin to 0, allowing the formation of tiny charts. For all other examples
shown, smin has been set to 1% of the length of the largest side of the bounding box of the input atlas. Concretely
speaking, the BoxCutter method uses a region growing algorithm over the edges and vertices of each affected
chart in order to quickly evaluate the size of all resulting pieces. Regions are grown from arbitrary starting points
within the affected charts, and the process is stopped if the step over the next edge would cross the cut line. For
each vertex of a region, the algorithm computes its axis-aligned distance to the cut line, while keeping track of
the maximum distance encountered for the region so far. As soon as a region has been visited, we therefore know
its maximum distance to the cut line, which can be used as a reference value for the size of a resulting chart. If
this size would be below a given threshold, the triangles of a region are being marked as protected, and they are
consequently not cut. This way, small outstanding parts of a large chart can be locally protected, while at the
same time cutting away its larger portions that exceed the size threshold.

Biasing Cut Locations. A variant of the BoxCutter algorithm allows the user to provide per-vertex weights,
effectively specifying importance values for the different regions of the mesh. When computing scores for cut

47

3. Texturing

candidates, these importance values can be taken into account by multiplying the length of each resulting edge
by its importance (which is computed as the average of the importance value of its two vertices). BoxCutter then
uses this importance-biased boundary length bimp instead of b to compute the score s for each possible solution.

3.3.3. Packing Algorithm
The overall cutting and compacting strategy of BoxCutter is agnostic to the choice of packing method used, and
can operate in conjunction with any existing packing method. However, since it repeatedly employs packing as
an assessment tool to determine which cuts to employ, runtimes of the algorithm are highly dependent on packing
time. The packing framework introduced in the context of BoxCutter is optimized for providing a suitable trade-
off between packing efficiency and computation time, allowing to use the packer as a black box evaluation tool
between fifty to a hundred times throughout the computation, while keeping the overall computation time at
around five minutes on average. The following paragraphs summarized the most important aspects of this novel,
efficient packing method.

Fig. 3.20.: Packing with various
aspect ratios.

(Image: [LVS18])

Rasterized Active Area and Chart Placement. As with prior work, the
packing algorithm performs packing in raster space. It also follows the stan-
dard approach of sorting charts from large to small, and then greedily placing
them inside the discrete working space. To assess different ways of place-
ment, the method considers several variations in chart position and chart
orientation (including mirroring). In contrast to Nöll and others, who use
horizon lines to track active area, BoxCutter uses the bounding boxes of the
current charts to derive placement candidates within an axis-aligned active
area. Initially, the active area consists simply of the bounding box of the
first chart that has been placed at the center of the rasterized working space.
As soon as other charts are added, the active area is extended accordingly,
always representing the bounding box of all charts inside the atlas. Consid-
ering placement candidates within the entire active area and its immediate
surroundings allows BoxCutter to obtain more efficient packings than other
approaches based on horizon lines (cp. [LPRM02, SWG∗03, NS11]). In se-
lecting the optimal placement for each chart, the method by default chooses
the placement that extends the current active area by the smallest number of pixels. Given multiple alternatives
with the same minimal pixel count, it selects the one that places the chart closest to the bottom left of the ac-
tive area. This strategy pulls charts towards this single corner, keeping space free in other areas and facilitating
the pixel shifting post-process (explained in one of the following paragraphs). BoxCutter supports an optional
strategy that computes an augmented active area which fits a given aspect ratio, whenever a chart placement is
evaluated. This allows the algorithm to produce packings that approximate a prescribed aspect ratio, which is
useful in many practical scenarios - an example is shown in Fig. 3.20.

Hierarchical Optimization. Using an exhaustive search over several possible locations, rotations and mirrored
configurations, even when limited to an active area, is an expensive process, compared to more constrained
approaches that are based on the tracking of horizon lines. In order to speed up the packing computation,
BoxCutter therefore maintains a hierarchy of buffers, where the resolution of each coarser level is half of the
previous one. The finest level of the working space contains the actual chart data, consisting of one chart ID per
pixel. The remaining level’s pixels each store the number of corresponding empty fine-level pixels. Storing the
number of non-empty pixels along with each rasterized variant of a chart allows to quickly reject placements in

48

3.3. BoxCutter: Cut-and-Repack Optimization for UV Atlases

coarse pixels that do not contain enough free fine-level pixels to accommodate a chart, and to directly compute
the best possible placement within large empty regions. This feature reduces the time needed for packing by up
to 60%. In addition, the rasterized boundary of each chart is stored explicitly. This allows the algorithm to check
boundary pixels first when testing a possible placement at the finest level of the hierarchy, allowing to resolve
many cases earlier than it would be possible when checking chart pixels line by line.

Pixel-Shifting Post-Process. BoxCutter prescribes an approximate resolution for the rasterized atlas, and uses
it to rasterize each chart. The method rasterizes charts conservatively: whenever a triangle partially overlaps a
pixel, that pixel is set. The raster resolution needs to be kept moderate (1282 or 2562), since too many candidate
evaluations would slow down the packing process. However, the choice of a resolution limits packing efficiency,
as the unused continuous domain space between two charts that are densely packed next to each other in raster
space may, in the extreme case, cover almost an entire pixel, which can be a notable distance at moderate
resolutions. To eliminate such spaces, the BoxCutter method optimizes the packing in a post-process at higher
resolution (10242). The optimizer translates charts pixel by pixel towards a given gravity direction (e.g., to the
bottom left corner), as long as no other chart is being intersected. This process is executed repeatedly for each
chart until no chart can be moved any more. Despite the higher resolution of the rasterized atlas, this post-process
consumes far less time than the actual packing, as it only needs to evaluate translations of the boundary pixels of
each chart in a given direction.

Using Gutter Space. A range of applications require allocation of extra space around chart boundaries, some-
times referred to as gutters. The quality of rendered texture content along boundaries can be improved by adding
such gutters [GP09]; tailoring applications require seam allowances; and papercraft and other fabrication settings
often benefit from flaps. In the context of the proposed packing method, accounting for all of these extra space
requirements is straightforward. Prior to each chart packing computation, chart boundaries are offset outwards
by the amount necessary for the target application, and these extended charts are packed as before. The cut-and-
repack optimization of BoxCutter naturally adapts to this change by taking the extra amount of space induced
by the cuts into account during packing efficiency computation, thereby effectively favoring configurations with
shorter boundaries when a larger amount of gutter space is being used.

3.3.4. Results & Discussion
To evaluate the efficiency of the BoxCutter approach, several experiments have been performed, and the results
are presented within this section.

Packing Efficiency Improvement. The BoxCutter method has been tested on a range of inputs, produced
via multiple combinations of cutting and parameterization methods: manually unwrapped inputs, seam gen-
eration [SH02] followed by parameterization [SLMBy05] for the horse, cow and feline models in Fig. 3.21;
simultaneous cutting and parameterization [PTH∗17] for the elk and armadillo models Fig. 3.21; different global
parameterization methods [Lip12, BCE∗13, BCW17, MPZ14, LZ14], chartification methods for bunny and fan-
disk models in Fig. 3.21, parameterized using [SLMBy05]; 2D data sets used for the Dapper paper [CZL∗15],
shown in Fig. 3.24, and models parameterized using the bijective free-boundary method of Jiang et al. [JSP17].
The BoxCutter algorithm is agnostic to how the input was generated, and performs equally well on the different
data sources (Fig. 3.21). A range of statistics for the models shown in the paper is summarized in Tab. 3.2. Over-
all, the method improves output packing efficiency by an average of 54% when the increase in boundary length
is capped at 30%, and an average of 74% when boundary length is allowed to double. It achieves the greatest

49

3. Texturing

Model [Method] PE / BL PE Improvement (PE / BL)
Bijective BLen < 130% BLen < 150% BLen < 200%

armadillo [PTH+17] 55% / 11.3 +33% (73% / 14.4) +45% (80% /15.9) +46% (81% /19.3)
elk [PTH+17] 51% / 13.4 +42% (72% / 16.4) +58% (80% /20.0) +58% (80% /20.0)
girl [PTH+17] 44% / 14.8 +75% (77% / 18.7) +81% (80% /21.5) +85% (82% /22.8)
beethoven [SH02] 59% / 16.2 +31% (77% / 20.1) +36% (80% /22.1) +36% (80% /22.1)
bunny [SH02] 62% / 14.1 +28% (79% / 18.1) +30% (81% /20.0) +31% (81% /23.0)
cow [SH02] 49% / 9.1 +57% (77% / 11.4) +66% (82% /13.1) +66% (82% /13.1)
feline [SH02] 54% / 17.5 +37% (75% / 20.5) +41% (77% /25.5) +41% (77% /25.5)
gargoyle [SH02] 55% / 11.0 +33% (73% / 12.9) +53% (83% /16.4) +56% (85% /18.1)
horse [SH02] 51% / 7.8 +34% (69% / 9.7) +50% (77% /11.1) +71% (87% /13.9)
aircraft [Lip12] 68% / 12.2 +23% (84% / 15.7) +23% (84% /15.7) +23% (84% /15.7)
cup [Lip12] 69% / 6.9 +16% (80% / 8.4) +24% (85% /9.6) +30% (89% /11.3)
blade [BCW17] 55% / 13.7 +43% (78% / 17.6) +46% (80% /18.9) +47% (80% /20.9)
cow2 [BCW17] 64% / 12.6 +17% (74% / 15.2) +20% (76% /16.9) +30% (83% /24.2)
ramses [BCW17] 58% / 10.8 +29% (75% / 14.0) +32% (77% /14.2) +38% (80% /19.0)
camel [BCE+13] 49% / 21.4 +50% (74% / 26.5) +50% (74% /26.5) +50% (74% /26.5)
aircraft [MPZ14] 58% / 18.5 +40% (81% / 22.9) +50% (87% /27.3) +51% (88% /28.3)
santa [MPZ14] 61% / 27.1 +25% (77% / 32.0) +25% (77% /32.0) +25% (77% /32.0)
beetle [LZ14] 65% / 18.9 +21% (78% / 22.4) +21% (78% /22.4) +21% (78% /22.4)
bozbezbozzel [LZ14] 60% / 27.7 +20% (72% / 33.1) +20% (72% /33.1) +20% (72% /33.1)
bird [CZL+15] 30% / 9.4 +131% (70% / 11.5) +172% (83% /13.7) +181% (85% /18.4)
duck [CZL+15] 29% / 10.7 +159% (76% / 13.3) +160% (76% /16.1) +169% (79% /19.9)
excavator [CZL+15] 30% / 9.6 +114% (64% / 11.2) +167% (80% /14.0) +181% (84% /17.6)
jordan [CZL+15] 16% / 11.4 +273% (61% / 13.0) +370% (76% /16.1) +388% (79% /19.2)
tower [CZL+15] 38% / 10.6 +40% (54% / 12.5) +89% (73% /13.9) +131% (89% /19.3)
bunny [JKS05] 68% / 17.6 +14% (77% / 21.0) +14% (77% /21.0) +14% (77% /21.0)
fandisk [JKS05] 61% / 17.4 +37% (83% / 22.2) +39% (84% /24.9) +39% (84% /24.9)
rockerarm [JSP17] 42% / 12.4 +75% (74% / 15.3) +86% (79% /18.4) +96% (83% /22.6)
venus [JSP17] 59% / 5.4 +25% (73% / 6.4) +40% (82% /7.8) +55% (91% /10.7)
Min. 16% (5.4) +14% +14% +14%
Max. 69% (27.7) +273% +370% +388%
Average 52% (13.9) +54% +68% +74%
Median 55% (12.5) +36% +46% +48%

Tab. 3.2.: Results of packing efficiency optimization of various input data. The table shows, for different bound-
ary length thresholds, the increase in packing efficiency compared to the overlap-free version, the
output packing efficiency, and the resulting boundary length.

50

3.3. BoxCutter: Cut-and-Repack Optimization for UV Atlases

Fig. 3.21.: Results of optimization of various input models, generated by different parameterization algorithms.
The horse and cow models have been parameterized using ABF++ [SLMBy05]. (Image: [LVS18])

improvement on the jordan model. For all data sets shown in Tab. 3.2, the optimization process took 306 seconds
on average with the boundary elongation constrained to be at most 30% (using an i7-3770 CPU at 3.4Ghz and
32GB of RAM).

(Image: [LVS18])

User Control. BoxCutter can accommodate a range of
user preferences. In addition to supporting different termi-
nation criteria (Tab. 3.2, Fig. 3.18), BoxCutter can directly
account for the allocation of extra gutter space around the
chart boundaries, which is necessary to support seamless sig-
nal storage for texturing and for generating flaps for paper-
craft (Fig. 3.11, 3.26). The figure on the right shows how an
overlap-free input (a-b) is compacted without gutter space
(c) and with gutter space (d), using one percent of the nor-
malized bbox side length. As can be seen, using gutter space
around the chart boundaries decreases packing efficiency and
leads to less, and shorter, cuts in the resulting compact atlas.
The method furthermore allows to penalize cuts in visually
important regions, so that artists can redirect cuts away from
key feature areas. This process is illustrated by example by
the different parts of Fig. 3.22: when optimizing an input
parameterization (a) by removing overlaps (b) and perform-

51

3. Texturing

Fig. 3.22.: Importance-weighted cutting. (Image: [LVS18])

ing compacting cuts (c), new cuts may cross important regions, such as the facial features in this case. Using
importance weights (d), BoxCutter is able to protect such regions from cutting during overlap removal (e) and
compacting (f).

Efficiency of the Packing Algorithm. For typical scenarios, the proposed packing method is able to efficiently
pack arbitrarily shaped charts inside a common atlas within a second or less; an example packing is shown in
Fig. 3.23. As can be seen from the comparison, the method is able to outperform other state-of-the art approaches,
in terms of packing efficiency. It is worth noting, however, that the method of Nöll and Stricker is also able to
produce modulo packings (not shown in Fig. 3.23), which is not possible with the BoxCutter packing algorithm.
Such a modulo packings modulo packings investigate more placement possibilities by allowing charts to wrap
around the UV atlas, therefore they are potentially more efficient than the ones produced by BoxCutter.

Fig. 3.23.: Results of chart packing into a square atlas, using different packing algorithms. (Image: [LVS18])

52

3.3. BoxCutter: Cut-and-Repack Optimization for UV Atlases

Comparison to Dapper. The performance of the BoxCutter method has been evaluated against the Dapper
approach, which focuses on tradeoffs between packing efficiency and chart count [CZL∗15]. To allow for a com-
parison, different termination criteria were used, running the BoxCutter algorithm until the number of generated
charts, resulting boundary length or packing efficiency matches the respective Dapper results. As can be seen in
Fig. 3.24, BoxCutter outperforms the Dapper approach in terms of packing efficiency and boundary length for
almost all cases. The only exception is the pagoda data set (rightmost column), where Box Cutter obtains lower
packing efficiency results when constrained to produce only two charts.

Applications. The two core applications of the BoxCutter method are signal storage for texturing and fabrica-
tion, and both have been experimentally evaluated. Fig. 3.25 shows ambient occlusion and normal maps captured
from a high-resolution input and baked onto a low-resolution mesh using the unoptimized atlas generated by the
Autocuts algorithm, as well as using another optimized by BoxCutter (using the Autocuts output as input at-
las). The more efficient packing of the optimized version allows for a more efficient use of texture space, and
consequently a higher quality reproduction of the baked normals and occlusion data, resulting in sharper edges
and creases in high-frequency areas. Figures 3.11 and 3.26 demonstrate the usability of the BoxCutter method
for fabrication scenarios. The two original atlases shown are containing overlaps, making them unsuitable for
fabrication. After overlap removal (Sec. 3.2), the atlas packing efficiency was 31% and 49% respectively, which
subsequently improved to 61% in both cases, following the BoxCutter optimization. Given a target model size of
11.3×13×7.2cm, a 27.9×43.2cm sheet of paper has been used to create the bunny model using the optimized
atlas. To create this model using the original layout would have required a 56.7×36.9 sheet of paper.

Limitations and Future Work. While BoxCutter delivers good results practice, it cannot offer any theoretical
guarantees on its outputs. The thorough investigation of this aspect therefore remains an interesting topic for
future work. Furthermore, an obvious extension of this approach would be to look at three-dimensional void
boxes and cuts for packing 3D objects.

53

3. Texturing

Fig. 3.24.: Comparison results generated by Dapper [CZL∗15] (leftmost column) to those generated by BoxCut-
ter, using as termination criterion the respective Dapper result’s number of pieces (second column),
packing efficiency (third column), and boundary length (fourth column). (Image: [LVS18])

54

3.3. BoxCutter: Cut-and-Repack Optimization for UV Atlases

Fig. 3.25.: Fixed-resolution textures (2048× 2048px), used to store normals and occlusion, applied to the girl
model. Left: Maps generated using the unoptimized input of Poranne et al. [PTH∗17]. Right: Maps
generated using a version optimized by BoxCutter. (Image: [LVS18])

Fig. 3.26.: Papercraft fabrication example. An unoptimized layout (a) is optimized (b) in order to efficiently
exploit available material for fabrication (c). (Image: [LVS18])

55

3. Texturing

3.4. Summary

Within this chapter, we have investigated methods to generate a UV atlas for efficient texture mapping. After
studying the basic concepts and different methods for mesh segmentation, parameterization and atlas packing,
we have discussed two novel contributions, which were both first proposed in the context of the BoxCutter
method [LVS18]: A method for efficient overlap removal with a minimum amount of cuts, and a cut-and-repack
algorithm that is able to significantly improve the compactness of a texture atlas. Both approaches have been
demonstrated to provide good results in practice, and both are able to account for various user parameters, such
as per-vertex important weights to favor cuts through inconspicuous regions.

The novel overlap removal technique is based on a graph cut optimization procedure. By defining the graph as a
dual graph of the mesh and adding additional edges with large negative weights between overlapping triangles,
the method considers the global topology of the 2D mesh, instead of just investigating local solutions around
overlapping regions. Compared to the previous state of the art, this leads to a significant improvement, resulting
in overlap-free solutions with just a minimum amount of cuts.

The BoxCutter algorithm improves the packing efficiency of an existing texture atlas by detecting large empty
areas, from which cut lines are deduced. These axis-aligned cut candidates are then locally optimized using a
line search and evaluated, in order to repeatedly select the best cut candidate. In this context, the best candidate
is always the cut that leads to a significant improvement in packing efficiency while keeping the amount of
boundary elongation low. These goals are combined into a common score. It has been demonstrated that the
method achieves strong improvements in packing efficiency on a wide variety of input data sets, parameterized
using by various different methods. Concretely speaking, when the boundary length was allowed to increase
by up to 30%, BoxCutter achieved an increase in packing efficiency by 54% on average. Obtaining a more
efficient packing has been shown to be a useful property in the context of different applications, including texture
mapping, but also manufacturing from sheet materials, where the amount of waste can be reduced this way.

56

II
Online: Techniques for the 3D Web

57

4 Compression and Encoding

With a simplified, textured 3D model at hand, it is possible to transmit the 3D mesh data over a network in
order to visualize it within a user’s Web browser. This true 3D approach based on meshes is by far the most
popular method in order to visualize 3D objects on the Web, being used by popular platforms such as Sketchfab,
Remix3D or facebook. Through research and practical experience, a single file format has converged to become
the most popular container for the efficient delivery of 3D mesh data on the Web: the glTF 2.0 Binary standard
format (.glb). It allows for fast transmission and decoding, and its material model is ready for Physically-Based
Rendering (PBR), supporting high-quality visualization of a wide range of materials from the real world. My
coauthors and me have significantly contributed to this development by proposing the Shape Resource Container
(SRC) format in 2014, and by proposing a simple format for PBR-ready materials for glTF in 2016. This chapter
therefore focuses on the developments that led to SRC and PBR in glTF, shaping core pars of the current glTF 2.0
standard and eventually enabling efficient transmission and fast decoding on all possible kinds of client devices.

While mesh-based methods towards 3D visualization on the Web are the most popular approach, alternatives
exist, including Image Based Rendering (IBR) and Video Based Rendering (VBR) [LHDE15]. In practice, a
simple pseudo-3D alternative is the use of animated series of 2D images, realized using JavaScript libraries
such as jQuery reel1 or the 3DNP (3D - No Plugins) technology2. For quite a while, this viewer has been used
by the popular 3D printing portal Shapeways3, being one popular example where the use of a true 3D mesh
representation has been avoided. Before discussing the development of SRC, we will therefore have a quick
look at such alternative approaches, and at results from practical experimentation. Specifically, Sec. 4.2 presents
a case study that compares advantages and disadvantages of 2D image series and compact 3D models (in this
context entitled 3D Thumbnails). Furthermore, in Sec. 4.3, we will evaluate several proposed formats in the
context of real-world 3D Web applications, using Desktop clients or mobile devices. The SRC format for 3D
mesh data on the Web will be introduced within Sec. 4.4. We will investigate the progressive transmission and
basic compression scheme offered by SRC, as well as an addressing scheme for mesh data that allows for efficient
data compositing. Finally, we will investigate a PBR-ready material model for use with X3D and glTF within
Sec. 4.5.

1http://test.vostrel.net/jquery.reel/example/index.html
2http://www.thoro.de/page/3dnp-introduction-en
3http://www.shapeways.com

59

http://test.vostrel.net/jquery.reel/example/index.html
http://www.thoro.de/page/3dnp-introduction-en
http://www.shapeways.com

4. Compression and Encoding

4.1. Goals & State of the Art

Using 3D mesh data for visualization applications on the Web, the question arises how this kind of data should
be encoded. Pajarola and Rossignac mention three important objectives that should guide the design of a 3D
transmission format [PR00]:

1. Progressive Refinements during decompression

2. Near-Optimal Compression Ratios for mesh geometry and connectivity

3. Real-time Decompression

These objectives are in parts contradictory, therefore an optimal format must carefully balance between all of
them. We will see that, in order to be efficient, an optimal real-world transmission format must especially
account for the third goal, real-time decompression. The remainder of this section organizes and summarizes the
most relevant related work.

4.1.1. Timeline and Structure of Related Work
Overall, research efforts from the past decades that have been dedicated to 3D mesh compression and encoding
can be grouped into different periods. A significant turning point in the development of 3D compression formats
was the advent of WebGL, bringing hardware-accelerated 3D graphics to common Web browsers. The following
sections are therefore structured into the period before (Sec. 4.1.2) and after the advent of WebGL (Sec. 4.1.3).

Before WebGL was available, there was not a single, common target platform. The Virtual Reality Modeling
Language (VRML), for example, served as the first standard format for 3D scene content that was intended to
be used in a Web scenario, and it has already been created in the mid of the 1990s. However, supporting VRML
content directly as part of Web pages, without installing a browser plugin, was not possible, since there was
no common low-level graphics API, and JavaScript as a common programming language and tool for client-
side code in Web pages was not widely available yet. In order to view VRML files, a so-called VRML player,
being an application that is able to display interactive VRML scenes, was necessary. This active role of the
end users, requiring them to install a specific browser plugin, as well as other technical limitations, prevented
the widespread use of 3D data within common Web pages. It is therefore not surprising that developments of
3D compression methods, while being a very active area of research within the late 1990s and the following
decade, did not converge to any broadly accepted solution. Instead of being able to evaluate a large-scale usage
of compression techniques on the World Wide Web, researchers often focused on very different experimental
setups when designing and evaluating 3D compression methods. As a consequence, metrics used for evaluation
were often only focusing on a single aspect of 3D mesh compression (such as high compression rates) while
neglecting other aspects entirely (such as high decompression performance).

With the advent of WebGL in 2011, suddenly, many million end users were enabled access 3D content without
having to install a specific application or plugin. This technological breakthrough enabled new applications, and
it also raised a new demand for robust 3D compression and encoding methods that work well with all kinds
of client devices, ranging from Desktop computers to mobile devices such as tablets or smart phones. As a
consequence of these developments, it became necessary to take a second look at the wide variety of existing
3D compression methods, evaluating their applicability to modern 3D graphics applications on the Web. As
shown within Fig. 4.1, the time period after the advent of WebGL, which we will focus on during this thesis,
can be further subdivided into three generations of 3D formats: Non-standardized text-based and image-based
encodings, binary formats and emerging standards, and, finally, robust standard technology. In addition to the
review on methods for mesh compression and encoding, we will briefly review the concept of physically-based

60

4.1. Goals & State of the Art

Fig. 4.1.: Timeline of technology related to 3D mesh compression and encoding on the Web. Early research,
published before the advent of programmable shaders, mobile devices or WebGL, has provided the
foundations for the formats that are currently in use. However, the mentioned changes in the techno-
logical ecosystem raised the need for adaptions of existing approaches towards 3D mesh compression
and encoding, in order to provide today’s portable, lightweight solutions.

rendering for real-time 3D Web applications (Sec. 4.1.4), leading us to an expressive, yet compact description
for materials, which complements methods for encoding and compression of mesh geometry and mesh topology.

4.1.2. 3D Mesh Compression before the WebGL Age
A wide range of compression methods for 3D mesh data has been proposed within the past three decades.
Within the following, the most relevant related work is briefly summarized. A more extensive survey paper
has recently been presented by Maglo and others, to which the interested reader is referred for a more detailed
overview [MLDH15]. Previous survey papers have been provided by Alliez and Gotsman and by Peng and
coauthors [AG03,PKJK05]. In the following, related work will be structured according to three different aspects:
compression of mesh geometry, compression of mesh connectivity, and progressive mesh compression methods.

Geometry Compression. A pioneering work in the field of mesh compression has been presented by Deering,
making the term Geometry Compression popular [Dee95]. Deering applies quantization to reduce the amount of
bits needed to store the information associated with each vertex, including its position, color and surface normal.
Instead of using the full-precision floating point data, a fixed-point representation with less bits is being used,
and values are normalized to the range of each attribute’s possible values. For 3D positions, for example, it may
be sufficient to use 16 bits or less to store a single unsigned xyz component, which is encoded with respect to the
local position inside the mesh’s bounding box. Before rendering, the fixed-point value can be simply mapped
back to the unnormalized range in world space by multiplying with the size of the bounding box and offsetting
the resulting coordinates by the bounding box’ minimum values. A similar method is used to encode RGB
vertex colors. For normal vectors, Deering presents a more sophisticated approach towards compression which
subdivides the sphere into octants, the subdivides each octant into sextants, and finally represents surface normals
as two-component (θ,φ) vector of quantized coordinates, which are relative to the respective sextant. This

61

4. Compression and Encoding

approach exploits the fact that normals are simply unit-length vectors that encode an orientation, hence an explicit
3D representation is unnecessary. Within the following years, alternative representations to the representation
used by Deering have been proposed, describing parameterizations of the sphere that are more efficient to use,
providing a high-precision encoding and fast decoding on modern graphics hardware. A survey on this topic has
recently been provided by Cigolle and coauthors [CDE∗14].
As already mentioned by Deering, all quantized vertex attributes can be efficiently compressed using delta coding
techniques [Dee95]. The basic idea is to store the actual values only for the first element and then encode
subsequent ones via their difference to the preceding entry. Since mesh data is not randomly distributed, we can
obtain a lot of similar, small delta values with this technique, given that we can somehow traverse the vertices of a
mesh in such a way that we mostly make small moves towards similar, spatially neighboring vertices (see the next
paragraph on connectivity compression). Having such a traversal strategy and the corresponding delta values at
hand, these values can be efficiently compressed using classical Huffman coding, where varying bit lengths are
used to store frequently occurring values with less bits [Say12]. More advanced entropy coding techniques, such
as arithmetic coding, may be used as well. Recently, Won Chun presented a smart practical approach that encodes
coordinate delta values by using UTF-8 variable-length characters and exploiting browser’s builtin capabilities
for a quick decoding in 3D Web applications [Chu12a].
More sophisticated approaches towards geometry compression are based on spectral compression, which is
able to deliver near-optimal compression rates [KG00, BCG05]. The basic idea is to represent the entire mesh
geometry in the spectral domain, which is built from the eigenvectors of the Laplacian matrix, representing
the connectivity graph of the mesh. This allows for near-optimal, high-quality compression and interesting
possibilities, such as dropping low-frequency components instead of high-frequency ones in order to achieve
a more pleasing visual appearance [SCOT03]. However, in practice, spectral methods suffer from the huge
drawback that obtaining the eigenvectors of the Laplacian is a very expensive process with cubic complexity,
which unfortunately cannot be performed in real-time during decoding for common meshes.

Connectivity Compression. Early works on connectivity compression, such as the Deering’s work, introduce
the general concept of efficient mesh connectivity encoding: an efficient traversal of the mesh, processing neigh-
boring polygons step-by-step and keeping track of the steps on the way [Dee95]. Deering’s representation,
entitled the Generalized Triangle Mesh, expands on the previous concept of Generalized Triangle Strips by in-
troducing a fixed-length cache and allowing to explicitly re-use previously used vertices. Touma and Gotsman
provided an alternative approach which, however, only works for manifold meshes, efficiently encoding the con-
nectivity via the valence of each vertex [TG98]. They also introduce a so-called parallelogram prediction scheme
that uses the vertex positions within the last triangle to compute a potential position for the new vertex of the
next triangle, storing then only the difference to that predicted value. Finally, another notable approach towards
connectivity encoding has been proposed by Rossignac, introducing the Edgebreaker method [Ros99]. Using
five different basic operations, the traversal of a manifold mesh can be efficiently encoded. The original method
is relatively easy to implement, and practical improvements in order to achieve an even more straightforward
implementation have been proposed [Ros01]. One limitation that remains is that the mesh to be encoded must be
a manifold, which means that in practice one may have to segment a given mesh into manifold pieces first before
being able to encode it.

Progressive Meshes. While the first approaches towards connectivity compression aimed at an efficient encod-
ing of the entire mesh by conquering the surface step by step, so-called progressive mesh compression methods
take a different approach. Starting with a low-resolution version, the so-called base mesh, one can obtain the
original, high-resolution mesh by improving the connectivity and geometry of the base mesh over time, until the

62

4.1. Goals & State of the Art

Approach Test CPU ∆/s b/v

[Hop98] Pentium Pro (200 MHz) 172K 153
[PR00] R12000 SGI O2 (300 MHz) 46K 20
[KSS00] Pentium II Xeon (550 MHz) 32K 15
[AD01] Pentium III (NA) 5K 14
[VCP09] Intel Quad Core (2.66 GHz) 33K 14
[MLL∗10] NA (2 GHz) 20K 17
[MCAH12] Intel Core i7 (2.8 GHz) 122K 16

Tab. 4.1.: Reported decode times and compression performance (bits / vertex) for several progressive mesh com-
pression methods.

high-resolution mesh has been reconstructed. This way, mesh data can be streamed over networks while using a
progressive refinement during transmission, providing the user with an early first version, and with a continuously
improving visual result. The original approach of Hoppe stores a list of edge collapse operations, which have
been previously used to simplify the original mesh in order to obtain the base mesh [Hop96]. The vertex split
operation, which is the inverse operation to the edge collapse, can then be applied to each collapse to reconstruct
the original model. Several proposals for improvements and specific implementations of this original algorithm
have been published subsequently, the interested reader is referred to the survey by Peng et al. [PKJK05]. A
recent approach, which also contains references to more recent work, has been presented by Caillaud and coau-
thors [CVDL16]. In general, techniques applied to geometry compression in the context of progressive meshes
are similar to classical ones (quantization, prediction). The connectivity compression schemes applied in the
context of progressive meshes are, however, different from single-rate approaches, as they are not built around
a generic conquest of the mesh’s surface, but around vertex split operations. This includes the classical method,
but also subsequent ones which use more advanced split codes in order to support also non-manifold meshes, for
example [PH97, CVDL16].

As many progressive mesh compression algorithms published within the past two decades are achieving impres-
sive compression results and high-quality progressive reconstructions, such methods seem ideally suited for a
common Web-ready 3D format, for example by implementing them as extensions of the X3D standard [FCOIZ01,
MLL∗10]. Nevertheless, the surprising result illustrated in Table 4.1 is that the efficient implementation of Hoppe
from 1998, using his original algorithm, still provides the fastest decompression. Note that this is the case even
though the reported times were compared, so the advances in CPU technology are not taken into account at all
(which would lead to even more impressive results for Hoppe’s method). A main reason for this trend lies in
the focus on Rate-Distortion (RD) performance (i.e., the pure compression factor) within the past two decades
(see, for example, [AD01, VCP09, MCAH12, LLD12]). Since RD performance measures the efficiency of a
compression scheme independently from any specific bandwidth or CPU power, it does completely ignore the
trade-off between download bandwidth and decompression time, which has already been mentioned in the early
work of Hoppe [Hop98]. This trade-off is still crucial in today’s Web-based real-time visualization scenarios, it is
therefore also the main focus of the case study presented in Sec. 4.3. As will be shown, a typical example where
a complex (progressive or single-rate) decoding method could actually increase the time needed to wait for the
final result, compared to uncompressed transmission, could be the real-time inspection of CAD data, using a fast
company intranet and a tablet PC with only limited CPU power.

63

4. Compression and Encoding

4.1.3. 3D Mesh Compression and Encoding in the WebGL Age
Even before WebGL was finally released in 2011, a new trend towards supporting 3D graphics inside common
Web browsers could be identified. The roots of WebGL itself reach back until the first Canvas 3D experiments
that started already in 2006. The Canvas 3D proposal served as a basis when the Khronos group initiated a
WebGL working group in 2009, including participants from most major browser manufacturers. Around this
time, Behr et al. proposed the first DOM-based integration model for X3D scenes, entitled X3DOM [BEJZ09].
The idea was to enable interactive X3D content as just another type of media within common Web pages, by
defining a dedicated subset of X3D nodes, entitled the HTML Profile. The first X3DOM implementation was
relying on experimental browser features and plugins, such as Adobe Flash, but X3DOM instantly shifted to
pure JavaScript and WebGL as soon as broad support became available. Similarly, Sons et al. proposed XML3D,
another declarative framework for the integration of 3D content into common Web pages [SKR∗10]. In contrast
to X3DOM, XML3D did not use an existing standard to describe 3D scene content as part of the Web page, but
instead introduced a new, compact set of nodes (HTML tags), specifically designed for this purpose.

<mesh id="simpleMesh" type="triangles">
<bind semantic="index">

<int>0 1 2 0 1 3 ...</int>
</bind>
<bind semantic="position">

<float3>0.0 0.5 0.3 ...</float3>
</bind>
<bind semantic="normal">

<float3>0.0 1.0 0.0 ...</float3>
</bind>

</mesh>

Fig. 4.2.: DOM-based mesh encoding in an
early version of XML3D. X3DOM
initially used a similar encoding.

The First Generation: HTML Text, Images and JSON
Containers. What both early JavaScript-based frameworks
for declarative 3D, XML3D and X3DOM, had in common was
the way in which they initially integrated 3D mesh data: purely
text-based (Fig. 4.2). Mesh attributes, such as vertex posi-
tions and normals, as well as mesh connectivity, using a list
of indices, was specified directly as part of the HTML DOM,
producing long lists of numbers inside the document. Even
for medium-sized models, consisting of several tens of thou-
sands of triangles, this approach quickly produced HTML doc-
uments that exceeded one MB in size, just due to the heavy
mesh data. Browsers have not been designed to parse and han-
dle such massive data inside the DOM, hence the loading times
for common models were unacceptably slow. However, there

was no possibility to use an external binary format, since the TypedArray specification for JavaScript, for exam-
ple, was not available yet. One early method to externalize mesh data from the DOM, which has been proposed
by Behr et al. in the context of X3DOM, was therefore to store mesh data in common image files [BJFS12a].
This had the advantage that, as for regular images that are part of the Web page, the HTML document only has
to store a link to the data, but not the data itself. Since images can be downloaded in the background while
a user is already browsing the page, this approach works quite well and leads to a significantly improved user
experience. However, making efficient use of images as containers for mesh data requires some modifications
to the typical rendering pipeline that is used by a client. A more extensive discussion of this approach, which is
also entitled Sequential Image Geometry (SIG), is provided within Sec. 5.1. Gobbetti et al. proposed a method
which also uses an image-based mesh description format [GMR∗12]. In contrast to X3DOM’s ImageGeometry,
their method resamples the model data in order to build a tight atlas parameterization of the mesh geometry. This
enables them to use the atlas images also for multi-resolution transmission and rendering via simple mipmap
operations.

Won Chun, contributing to the Google Body project (later: Zygote Body), one of the first popular applications
based on WebGL, designed a format based on external text files, exploiting the browser’s built-in capabilities for
fast variable-length decoding of UTF-8 characters [Chu12a]. The method included a zigzag schema for more ef-
ficient delta coding and several other tricks that lead to a good balance between a good compression performance

64

4.1. Goals & State of the Art

and fast decoding, even without requiring direct access to binary data inside the browser. Later, JavaScript-based
3D libraries such as Three.js or A-Frame initially supported the text-based OBJ format as an external container
for mesh data. To compress text-based mesh data for transmission, one can exploit GZIP compression, supported
in all major browsers and Web servers as a standard HTTP encoding type. However, a possible bottleneck of
text-based approaches has always been the time needed to parse the text and to convert it into a representation
that can be used for rendering on the GPU. A variant of pure unstructured text-based encodings has been the use
of JSON encoding (JavaScript Object Notation). This encoding can be parsed using native browser functionality,
and an iteration through the structure as part of a JavaScript application is straightforward to implement. There-
fore, before binary formats were available, different JavaScript-based frameworks such as Three.js or XML3D
allowed to externalize mesh data to their custom JSON-based formats.

The Second Generation: Binary Formats and Emerging Standards. With the advent of the TypedArray
specification for JavaScript, it became possible for a client application to decode any possible binary format for
3D mesh data imaginable, without the need for specific text-based workarounds. However, one important con-
straint in practice remained the slow execution speed of common JavaScript programs, being interpreted by the
browser and therefore much slower than a comparable native implementation. With FastInfoSet, a binary com-
pression method for XML data has been proposed in the context of X3D (resulting in the X3DB binary format).
However, JavaScript implementations are expected to be slow, especially for large scenes. The MPEG-4 stan-
dard included BIFS, another binary compression methods which also compresses the 3D scene graph [JPP08].
However, it has not been designed with the JavaScript environment as primary target layer, therefore its practical
applicability in this context is also limited. Stocker and Schickel presented a study on X3D binary encoding
and GZIP / BZIP2 compression algorithms in X3D, showing that, using their binary encoding method, followed
by additional GZIP compression, bandwidth requirements for content delivery can be reduced by a factor of
two [SS11]. However, in order to be efficient, their method requires a specific plug-in, which is the reason why
it is not suitable for a pure JavaScript-based integration.

Lee et al. have limited their mesh compression algorithm to a straightforward local quantization scheme, pri-
marily targeting 3D applications on mobile client devices [LCL10]. They are partitioning meshes into several
roughly equally sized sub-meshes, and each vertex position is quantized and encoded with respect to the largest
bounding box. While not being directly proposed for integration with JavaScript-based 3D Web applications, the
method is straightforward to implement in this context, especially since a WebGL-based implementation may
perform the final decoding of vertex attributes very efficiently as part of the default computations that happen
inside the vertex shader. This principle is also applied by the X3DOM BinaryGeometry proposal by Behr et al.
[BJFS12a]. The basic idea of the glTF standard is pretty similar to X3DOM’s BinaryGeometry format: The large
unstructured mesh data buffers are stored in external binary files and can be downloaded by the JavaScript layer
of the application. As a result of the COLLADA2JSON project, the glTF effort followed the earlier COLLADA
approach, which provided an open, declarative 3D asset interchange format. However, COLLADA was rather
complex to handle and XML-based (similar to X3D), therefore it was not well-suited for the transmission of
ready-to-render 3D mesh data. In contrast, glTF, standing for GL Transmission Format, has been designed as a
lightweight transmission format from the beginning. In order to enable the same simple compression method for
vertex attributes that already existed for BinaryGeometry, my coauthors and me have proposed an extension to
glTF 1.0 which enables the use of quantized attributes [LSTT15]. In 2014, there were two proposals towards a
standardized, self-contained binary format for 3D mesh data on the Web, both presented at the ACM Web3D con-
ference. On the one hand, the XML3D team presented Blast, a Binary Large Structured Transmission Format for
the Web [SSS14]. In contrast to other approaches such as glTF, Blast does not define a fixed set of encodings, but
instead builds on the code on demand paradigm, providing an encoder-agnostic way to enable domain-specific

65

4. Compression and Encoding

solutions and custom compression techniques. Furthermore, Blast employs self-contained chunks that can be
decoded in parallel, allowing for faster decoding than pure sequential approaches. On the other hand, my coau-
thors and me presented the Shape Resource Container (SRC) format [LTBF14]. It is closely related to glTF 1.0,
but provides additional capabilities for progressive streaming (generalized enough to support various methods),
encoding of texture data and mixing of texture and geometry refinements, as well as a scheme for addressing and
compositing of mesh data within the surrounding application or scene description. We will have a closer look at
the SRC format in the respective part of this thesis, Sec. 4.4.

The OpenCTM format is an open binary format for 3D mesh compression [Gee09]. Being designed before
the advent of WebGL, it has been proven to offer good compression rates while still providing a relatively fast
decompression for native Desktop applications. Being based on LZMA compression, OpenCTM offers a more
sophisticated compression than other Web-based formats. However, Web applications using OpenCTM will first
have to decode the compressed data inside the JavaScript layer before being able to upload it to the GPU for
rendering. Therefore, the question arises how efficient OpenCTM is when used inside a JavaScript-based 3D
Web application on a mobile device, for example. The case study shown within Sec. 4.3.3 includes OpenCTM
as one of the evaluated formats, and provides an answer to this question.

The Third Generation: Robust Standard Technology. After several approaches towards efficient binary en-
coding of 3D mesh data for the Web, glTF 2.0 finally emerged as the predominant standard, being supported
in a wide range of Web-based 3D graphics engines and Desktop applications. One reason for this is the ef-
ficient and easy-to-use encoding that glTF provides, using a JSON-based description of the structured scene
data and external binary buffers for heavy, unstructured binary mesh data. The binary version, glTF Binary
(.glb) is also rather easy to use, since it enables the storage of all kinds of scene data, including texture images,
within a single, self-contained file. The current version of the glTF binary encoding (glTF 2.0) is heavily based
on an extension to glTF 1.0, which has been presented by Cozzi and coauthors (including myself) [CFN∗15]
This extension was itself heavily based on two previous proposals, one by the Cesium team (originally enti-
tled CESIUM_binary_glTF4) and one by my coauthors and me, as described within our paper on the SRC
format [LTBF14]. Besides the streamlined design of the format and an easy-to-use, efficient binary encoding,
another reason for the widespread use of glTF was the expressive, state-of-the-art material model introduced with
glTF 2.0. It is largely based on a proposal by Sturm and coauthors (including myself), and it will be described
more in detail in Sec. 4.1.4.

While glTF provides a straightforward (and therefore also efficient) encoding of binary mesh data buffers, it
is not applying any actual 3D mesh compression method. With support from Google, the Draco format for
mesh compression has therefore be proposed as an extension to glTF 2.0 [ZSG∗17]. It supports compression of
point clouds and meshes, compressing mesh attributes and connectivity. Mesh attributes are quantized to a given
precision, connectivity compression uses the Edgebreaker method [Ros01].

4.1.4. Material Models for Physically-Based Rendering (PBR)
The following paragraphs briefly summarizes the fundamentals of Physically-Based Rendering (PBR) and related
standards for the Web. This paradigm has shaped the core material description for the glTF 2.0 standard, based
on a proposal by Sturm and coauthors (including myself), which will be discussed more in detail in Sec. 4.5.

Motivations for PBR. Many real-world 3D Web applications require realistic real-time shading. In the offline
world, the trend towards PBR is an ongoing development, with the goal of replacing existing non-realistic shad-

4https://cesium.com/blog/2015/06/01/binary-gltf/

66

https://cesium.com/blog/2015/06/01/binary-gltf/

4.1. Goals & State of the Art

ing models and content creation pipelines with physically plausible alternatives. Especially within the Game
industry, one motivation for this is the simplification of workflows: without a physically-based shading model,
3D artists had to tweak artificial parameters for material and lighting, such as specular color or shininess, until
the desired result was achieved. This workflow was not optimal for many situations where physically plausible,
realistic results were required: Often, an artist would have to change material parameters again to adapt to a
new lighting situation, just to keep the existing visual impression of a material consistent. With PBR, artists
have a more reliable set of parameters at hand, such as surface roughness, which are corresponding to physical
properties of real-world materials. The developments were therefore largely driven by practitioners from the cre-
ative industry, including, for example, Disney’s work [MHH∗12], which was highly influential. For many years,
the common rendering APIs, such as OpenGL or Direct3D, offered only a fixed-function pipeline with a single
shading model, which was the Blinn-Phong model [Bli77]. In practice, the success of PBR has therefore also
been enabled through the introduction of programmable shaders, allowing the programmer to use, in principle,
arbitrary shading models. However, requiring engines to provide their own PBR implementation also led to the
fact that there is no single, commonly accepted material model for PBR.

PBR Core Concepts. PBR is more of a concept than a strict set of rules, and as such, the exact implementations
of PBR systems tend to vary. Still, the basic concepts are similar across implementations. The main goals behind
PBR are Simplicity (just a few intuitive parameters), Extensiveness (ability to work well for most materials and
real-time rendering pipelines) and Consistency (rendered results will look accurate and consistent under different
lighting conditions) [Kar13, SSTL16]. The behavior of light interacting with a surface is generally described
by a Bidirectional Reflectance Distribution Function (BRDF), and the used BRDF may vary between different
rendering engines. Within this work, we leave more sophisticated aspects, such as refraction, as well as ambient
lighting aside and just focus on metallic and non-metallic materials without such effects (see the work of Franke
for a more detailed analysis, for example [Fra15]). Most real-time engines that implement PBR use a Cook-
Torrance microfacet specular BRDF fspec and the Lambertian diffuse BRDF fdi f f to describe the reflectance of
a surface [CT82]. Reflectance describes how much incoming light from a direction l is reflected by a surface
with a normal n, viewed from direction v. Reflectance is not identical to the reflected intensity, but an energy-
independent measure, thus it has to be scaled by the energy of the incident light to obtain the final lighting for a
shaded pixel, being the reflected intensity Ir as perceived by the viewer. The energy of a simple directional light
(where the solid angle can be treated as constant) is the intensity Ii of the incident light, scaled by the cosine of
the angle of incidence, computed as n · l. The reflectance fdi f f + fspec scaled by this energy thus results in the
final reflected intensity Ir as perceived by the viewer:

Ir = Ii(n · l)(fdi f f + fspec) (4.1)

The specular term describes the reflectance behavior of metallic materials, as well as the shiny reflections of
glossy, non-metallic materials. It consist of three basic parts, F , G and D, which are combined to the final
specular term:

fspec(v, l,n) =
F(v,h)D(h,n)G(l,v,n)

4(n · l)(n ·v)
. (4.2)

Here, h is the halfway vector, which is simply computed as h = (l+ v)/‖l+ v‖, representing the hypothetical
surface normal that would produce a perfectly specular reflection for the given light and view directions. All
three components, F , G and D, are modeling certain statistical properties of the microfacets that are assumed to
represent the surface on a very detailed scale. These microfacets are never explicitly modeled in any application,
but instead they are simply used to describe light interaction for surfaces of different roughness: rough surfaces
are assumed to have less consistently oriented microfacets, while glossy surfaces are assumed to be very smooth,

67

4. Compression and Encoding

with rather consistent microfacet orientations.
The F component describes the amount of light reflected from a perfectly smooth version of the surface (as
opposed to light traveling through it and being scattered inside the material). This value is high for metallic
materials and low for non-metallic materials. The D component describes a statistical distribution of the micro-
facets (also referred to as Normal Distribution Function (NDF)), modeling how strongly surface normals of the
microfacets coincide with the direction of light reflected towards the viewer along the large-scale surface normal
n. For glossy surfaces, this value will be strongly varying depending on n (since the microfacets will have an
orientation consistent with n), and it will be a non-varying, constant value for surfaces with maximum roughness,
where the microfacets are assumed to have a nearly random orientation. The G component describes the amount
of light that reaches the viewer in the presence of self-shadowing effects across the microfacets. Its value will
be lower for rough surfaces, and higher for glossy ones, since a more random distribution of the microfacets will
lead to more self-shadowing, and hence to an attenuation of the amount of reflected light.

The diffuse term is more simple than the specular one, and it models the diffuse reflectance behavior of non-
metallic (dielectric) materials through a so-called base color (also called diffuse color or diffuse albedo color)
cdi f f . Concretely speaking, it describes the effect of light being scattered below the surface, or reflected through
multiple bounces (if the surface is rough):

fdi f f (v, l) = (1−F(v,h))
cdiff

π
. (4.3)

For a perfectly diffuse surface (commonly also entitled lambertian surface), the amount of outgoing light that
is reflected from the surface into every direction, or scattered below the surface, is constant for all directions of
incoming light. For a less diffuse, non-metallic surface, the amount of light reflected into the direction v towards
a viewer is depending on the direction l from which the light is coming in. Using the surface reflection ratio
defined through the Fresnel term F , one can account for this behavior in the final form of the diffuse component.
Since the Fresnel term is used to blend between diffuse and specular components for non-metallic materials, and
since it will lead to a zero diffuse contribution for fully metallic materials, energy is conserved throughout the
lighting computation [SSHL97]. Without the term (1−F(v,h)), the lit surface would reflect more energy than it
receives, which would not be physically plausible. An example of the different components and factors used for
PBR is shown in Fig. 4.3.

Image-Based Lighting (IBL). It may be worth noting that, in practice, one does usually not use just a single
light source, but a 360◦ environment, which is stored in images that form a so-called environment map (typically
parameterized over a sphere or over a cube), a method called Image-Based Lighting (IBL). There are several tech-
niques to precompute large parts of the lighting and to bake those into dedicated texture maps for the integrated
diffuse lighting (Irradiance) and for the integrated specular reflections of materials with different roughness lev-
els, as well as using lookup tables stored in textures, to accelerate the BRDF evaluation even further. These
are implementation aspects related to lighting environments, which should not be relevant for the specification
of PBR-ready materials. Still, it may be relevant to mention IBL, as it is by far the predominant technique in
practice, being used by every major PBR implementation. Especially, when looking at existing implementations,
there is often not a clear separation between parameters that belong to a material and such that belong to the
lighting environment to be used. A proposal for integrating environments into Web-based transmission formats,
independent of the material model, has been made by Sturm and coauthors [SSTL16]. Fig. 4.3 shows an example
rendered with IBL.

68

4.1. Goals & State of the Art

Base Color Metallic Roughness PBR Result (1 Light) PBR Result (IBL)

Diffuse Part
(1 Light)

Specular Part
(1 Light)

Specular F
(1 Light)

Specular D
(1 Light)

Specular G
(1 Light)

Fig. 4.3.: PBR using a compatible material description. The top row shows input material properties, as well
as the shaded result for a single light source and for Image-Based Lighting (IBL). For the ver-
sion using one light, the bottom row shows the different parts that make up the final reflectance,
including a breakdown of the specular factors (renderings generated using the glTF PBR demo
http://github.khronos.org/glTF-WebGL-PBR/).

69

http://github.khronos.org/glTF-WebGL-PBR/

4. Compression and Encoding

Transmission Formats and PBR. The GL Transmission Format (glTF) is an open standard by the Khronos
Group which aims at defining a format for ready-to-render 3D asset data. While glTF 1.0 allowed for the use
of custom shaders, it did not provide any material model as a more simple alternative. Thanks to recent efforts
towards this goal, which were supported by my coauthors and me and which will be discussed in Sec. 4.5, glTF
2.0 now uses a standardized model for PBR-ready materials. X3D, a standard XML-based file format for 3D
content, has no support for PBR materials by default. Like for glTF, it is possible to write custom shaders to
work around this limitation. This is, however, not helpful if a common parameter set should be found in order
to synchronize different content creation pipelines and renderers. The CommonSurfaceShader, as proposed by
Schwenk and coauthors, brought a wide set of expressive parameters to X3D [SJBF10, SJV∗12]. However,
completely adopting it for the Web environment is a complex task, and the node is not standardized.

PBR on the Web. With the introduction of WebGL, several Web-based 3D applications started to use PBR.
However, no unified model for PBR-ready materials existed. Until recently, the highly popular ThreeJS frame-
work did not have native support for physically-based shading. The X3DOM framework is a similar exam-
ple [BEJZ09]. Although X3DOM has an implementation of the (non-standard) CommonSurfaceShader node,
the implementation is not complete and it only supports some of the general parameters, but not the full set. The
Sketchfab5 platform for displaying and sharing 3D content online comes with a sophisticated PBR-ready material
model, supporting two different artistic workflows (Metallic-Roughness and Specular-Glosiness), in addition to
the traditional (non-PBR) Phong model. Another example would be the Marmoset Viewer6, a WebGL-based
viewer using PBR for artistic content exported by the Marmoset Toolbag application.

5https://sketchfab.com/
6https://www.marmoset.co/viewer/

70

https://sketchfab.com/
https://www.marmoset.co/viewer/

4.2. Case Study: 3D Thumbnails vs. 2D Image Series

4.2. Case Study: 3D Thumbnails vs. 2D Image Series

Presenting a collection of 3D objects online has become a very common use case for 3D Web technology. Popular
examples include online shops, Web portals for 3D printing, or virtual museums. Furthermore, the increasing
popularity of low-cost digitization devices raises demand for Web-based visualization of high-resolution, scanned
artifacts. To enable a fast overview over a large collection of 3D objects, most applications therefore employ
compact 3D representations, which we will call 3D Thumbnails7 in the following.

Like for photo collections, thumbnails of 3D models provide a compact, yet expressive preview over the database
content. In practice, such a thumbnails of a 3D model often still consists of a single image. Moreover, some Web
pages use animated image series to create the illusion of a 3D rendering, instead of using a true 3D viewer.
Typically, interaction is limited to modifying a single angle around the up-axis, effectively enabling a 360 degree
rotation of the viewer around the model at a fixed camera distance. This approach offers only a limited amount
of freedom for navigation and interaction, but the respective image series can be loaded very fast, since they do
not consume too much bandwidth.

Since the content to be visualized within a 3D gallery is actually a 3D model, the question arises if it is feasible
to use a real 3D preview, consisting of a true 3D model with all degrees of freedom for viewing and interaction,
instead of using a single image or an image series. This question is not only relevant in the context of 3D
thumbnails, but in the context of 3D viewing on the Web in general. The two basic alternatives are, on the
one hand, 3D mesh-based representations and, on the other hand, image-based representations. Both of these
approaches have specific advantages and disadvantages, as outlined in the following paragraphs (see [LBF15]).

Advantages of image-based representations. Image-based representations, aiming at Image-Based Render-
ing (IBR) or Video-Based-Rendering (VBR) do not necessarily require the client application to have full access
to a dedicated 3D graphics API and hardware. They usually also have lower device requirements, and therefore
might be a better fit if maximum portability is desired. If critical data (for instance, protected CAD product data)
should be displayed over an unsecure network, security restrictions may also prohibit the use of mesh-based
representations. With IBR or VBR solutions, deriving such critical data from the displayed images is a much
harder (and error-prone) task, therefore these methods might be preferred in such cases. Another great advantage
of VBR and IBR solutions is that they are independent from the complexity of the model and from its appearance
properties. Extremely high polygon counts, or the request for a very detailed view using complex materials and
realistic illumination might therefore also prohibit the use of 3D mesh data for real-time rendering, and lead to
IBR or VBR solutions instead.

Advantages of mesh-based representations. Depending on the application, the user might not be satisfied
with viewing a non-interactive scene, as it is usually the case with IBR and VBR solutions: changing the illumi-
nation or material properties of a scene, moving objects and other tasks simply cannot easily be realized using
IBR or VBR. A simple application example is shown in Fig. 4.4, where the user is able to freely navigate and to
change the direction of the lighting, using the mouse. In such cases, the resulting images have to be dynamically
generated on the client side, using common 3D graphics techniques and mesh-based representations. If network
bandwidth is a critical factor, mesh-based 3D representations are also the method of choice, especially compared
to approaches like light fields, which require the storage of huge amounts of data. This is due to the fact that an

7The term 3D Thumbnail was introduced by Chiang et al. [CKK10, CK12]. They transform meshes into a low-dimensional descriptor,
capturing the main geometric features of the mesh, from which a 3D preview can be generated and rendered. These 3D thumbnails differ
from ours, as we try to approximate not only the shape, but the entire appearance (including surface details) in a 3D preview.

71

4. Compression and Encoding

Fig. 4.4.: Example of a 3D Web application, showing the famous Pergamon Altar. Users can navigate freely and
use the mouse to change the lighting dynamically at any time. Such effects require a true 3D, mesh-
based representation, as they are very hard to realize with IBR or VBR (Pergamonaltar c© Staatliche
Museen zu Berlin, Antikensammlung, model digitized and visualized by Fraunhofer IGD).

optimized, meshed 3D model of a scene, along with a texture atlas, makes very compact scene representations
possible. One alternative solution to achieve maximum quality along with a maximum degree of interactivity, on
almost any client device, is the use of a dedicated server for remote rendering. However, the big disadvantage
of this image- or video-based approach is its bad scalability: As soon as multiple clients connect, a dedicated
rendering server or process must be maintained for each of them, which is not possible for many kinds of pub-
lic, large-scale Web applications (such as online shops, online exhibitions or social networks with 3D content).
Another problem in the context of server-based rendering is the need for a connection with minimum latency, in
order to be able to provide fluent user interaction. Therefore, mesh-based representations are usually preferred
for interactive small and medium-size scenes, which should be accessable for a large number of clients.

Considering the specific advantages and disadvantages of IBR / IBR solutions and mesh-based representations,
it depends on the context of the application which representation is best-suited. Using Service-Oriented Archi-
tectures (SOA) and RESTful APIs allows to deliver 3D assets along with context-specific application templates,
as it is done by Instant3DHub or XML3DRepo, for example [JDBW12, DSR∗13]. Client devices can then au-
tomatically receive a specific representation, matching their CPU or GPU capabilities, the available bandwidth,
and security-related constraints. This way, the decision between using IBR / VBR methods or using mesh-based
representations can even be dynamically performed per client. A server might, for example, decide to share
only images instead of real 3D information across unsecure networks, in order to prevent theft of proprietary
3D construction data. Providing an image stream for an interactive 3D experience, on the other hand, is only
possible with server-side rendering, which requires a powerful server architecture in order to scale well, even for
a small amount of clients. Therefore, the approach of statically providing compact, mesh-based representations
is usually the preferred way to deliver 3D assets on the Web, and already applied for a wide variety of use cases,
including popular examples such as online galleries and 3D content in social networks.

Within the following, we will investigate the possibility of using true 3D representations as interactive previews
for the content of 3D object galleries on the Web. The original case study, on which this section is based,
has already been performed and published in 2015 [LBFK15]. At this point, the InstantUV software, which
has been created by myself, was still in an early stage of development, therefore a simplified pipeline for 3D
optimization has been used to perform the experiments. This simplified 3D optimization pipeline is summarized
within Sec. 4.2.1. In the following, the file size of 3D thumbnails is evaluated against the file size of 2D image
series or comparable resolution. We will then have a brief look of the advantages and disadvantages of both
methods.

72

4.2. Case Study: 3D Thumbnails vs. 2D Image Series

Fig. 4.5.: Overview over the automatic 3D thumbnail generation pipeline used for our case study. The geometry
of the input mesh is first simplified. The resulting mesh is then parameterized in order to synthesize
textures, which are used to map original, high-resolution surface attributes onto the 3D thumbnail.
Finally, mesh data is converted into a compact delivery format. (Image: [LBFK15])

4.2.1. 3D Thumbnails
Within the following case study, we define a 3D Thumbnail as a true 3D preview representation for an original,
high-resolution 3D mesh. A 3D thumbnail is not only significantly smaller in file size than the original, but it is
specifically designed for being displayed within a viewport of a fixed, small size. This way, it serves a similar
purpose as a 2D image thumbnail: to be loaded much faster, and at the same time, to provide the best possible
insight about the large-scale structure of the original object. One could also state that the simplified version
should be visually as close as possible to the original mesh, by preserving overall shape, texture and surface
details, given a fixed threshold for the resulting file size. The pipeline used to create 3D thumbnails for our
experiments is summarized in the following paragraphs, a schematic overview is also shown in Fig. 4.5. A more
extensive review of methods for simplification and texturing can be found in sections 2.1 and 3.1 of this thesis.

Mesh Simplification. In order to decrease the size of a high-resolution 3D model to a level that can be used for a
3D thumbnail, the geometry must be simplified to a small number of vertices (see Tab. 4.2). For the experiments
as part of this case study, the method used was the OpenMesh8 library’s implementation of the quadric edge-
collapse algorithm [GH97]. The target number of vertices, required for a simplified mesh to resemble the shape
of the original one closely enough, depends on the original’s shape. Also, the notion of closely enough may
be subject to the viewer’s opinion. One way to determine the number of vertices to be used for the simplified
mesh could be the use of an error threshold, either in screen space or in 3D object space. However, for the
case study, a 3D artist decided about the resolution of each simplified mesh, which resulted in visually satisfying
approximations that capture all important geometric features of a model, but not unnecessary details. At the same
time, it was ensured that the size of each 3D thumbnail is in roughly the same range as the corresponding image
series, which allows for a fair comparison of the resulting visual error. The resolution of the original test models
and the resulting numbers for their simplified versions are summarized within Tab. 4.2.

Cutting. In order to generate a low-distortion 2D parameterization of a simplified mesh, and in order to meet
the requirements of the used parameterization method, it may be necessary to introduce cuts, potentially cutting
a mesh into several segments. In the case of our case study, where the LSCM algorithm will be used for parame-
terization (next paragraph), all segments must be of disk topology. To achieve this goal, a simpler variant of the

8http://www.openmesh.org

73

http://www.openmesh.org

4. Compression and Encoding

Scene Original Simplified
#vertices #tris #vertices #tris

Angel 500,355 1,000,000 588 688
Elephant 115,318 230,636 2,337 2,994
Dragon 125,000 250,000 1,526 1,972
Nefertiti 220,474 440,297 684 786
Cruciform 192,183 284,361 510 563
Bee 8,473,793 16,946,880 4,099 5,294
Thai Statue 4,999,996 1,000,000 2,579 3,008
Lucy 14,027,872 28,055,742 1,219 1,318
Santa 75,781 151,558 856 996

Tab. 4.2.: Test models used for our experiments.

segmentation algorithm presented by Lévy et al. has been used [LPRM02]. The algorithm first finds the 5% of
mesh edges with the largest dihedral angle and marks them as features. It then computes the minimal distance
to any feature edge or boundary edge for each vertex, edge and face. Beginning from the local maxima of these
distances, segments are grown by iteratively adding triangles at the segment boundaries.

Parameterization. The parameterization step maps every segment of the simplified 3D mesh onto a planar 2D
domain. Within the context of this case study, the LSCM algorithm has been used [LPRM02]. As soon as the
parameterizations have been computed for all segments, they are scaled in 2D texture space, such that their areas
in 2D correspond to their surface area in 3D object space. This ensures a consistent level of texture detail across
all segments.

Atlas Packing. By packing all parameterized 2D segments into a square, a texture atlas is created, allowing
to store surface attributes for the whole 3D surface of the mesh within a single image. Within this case study,
automatic arrangement in 2D was performed using a simple packing algorithm based on bounding boxes.

Texture Baking. Having computed a texture atlas, the next stage of the 3D optimization pipeline transfers
surface attributes (base color, normals) to 2D textures images, sampling the attribute data from the high-resolution
original mesh. During this process, commonly also referred to as Texture Baking, a mapping must be established
between each sample on the simplified 3D mesh and a corresponding sample point on the original 3D mesh. A
naive mapping would be a nearest-point mapping. However, it has been shown that visually better results can
be obtained by a normal shooting approach (see [SGG∗00]), which has been adapted for the experimental setup
within this case study. For every 2D texel of a synthesized texture, the corresponding point on the simplified
3D mesh is determined. The algorithm then searches, in forward and backward direction, along a ray which
originates from this point, following the direction of the interpolated normal, in order to find the closest point
of the original mesh. The implementation used within the experimental setup also requires that the original
mesh’s face intersected by the ray has an orientation that is similar to the one of the corresponding face on the
simplified mesh. Once that intersection point is found, its interpolated surface attributes are sampled and assigned
to the texel. To reduce interpolation artifacts, a gutter space is added around all sampled texel regions, repeating
texture content from the borders of the respective islands (see [SWG∗03]). For a given simplified mesh with a
given parameterization, the ideal resolution of the synthesized textures depends on the viewport resolution of the

74

4.2. Case Study: 3D Thumbnails vs. 2D Image Series

resulting 3D thumbnail, therefore several different resolutions have been used when generating a set of textured
models for evaluation.

Conversion to a Delivery Format Finally, as the last step of the experimental optimization pipeline used for
our case study, the simplified mesh and the texture maps have to be converted to a delivery format which is well-
suited for the Web. In order to yield the smallest possible file sizes, mesh geometry and texture images must be
stored efficiently. For imates, it is important to choose file formats that can be natively decoded by Web browsers,
in order to limit loading times to a minimum. Base color textures can be compressed lossily using JPEG images,
with little visual difference. The normal textures, however, cannot be easily stored as JPEG without a visible loss
of quality, therefore they have been stored as PNG images. Geometry is ideally stored in a binary format that is
compact in file size and, at the same time, not introducing any decoding overhead (see Sec. 4.3). This aspect is
especially crucial for 3D thumbnails, since they already serve as previews, which means they should be loaded
as fast as possible. During the following experiments, X3DOM’s BinaryGeometry format has been employed,
using a compression setting that creates 16 bit vertex positions and texture coordinates [BJFS12a]. The resulting
binary mesh data files have then been compressed with GZIP for delivery over HTTP.

4.2.2. Comparing 3D Thumbnails and 2D Image Series
To evaluate the performance of 3D thumbnails, a test setup has been created where an animated series of 2D
images serves as a comparison. Like for a 3D thumbnail, the main aim of such an image series is to provide
the user with an impression about the overall 3D structure of the object, by showing views onto the object from
different angles. A great advantage of such 2D image series, which is worth to be mentioned at this point, is that
one can display objects at any degree of realism, without any significant difference in application performance.
The images could, for example, show photographs, or high-quality path-traced renderings. However, the experi-
ments within our case study focus on a use case where the original model is rendered using real-time techniques,
which is sufficient to achieve high-quality results in many cases nowadays, using, for example, Physically-Based-
Rendering (PBR) (Sec. 4.1.4). Therefore, it is just a natural assumption that the image-based previews should
also be generated using the same rendering techniques as used for the true 3D models.

3D renderings of the nine test models used for the experiments, embedded in a prototypical 3D gallery on a
Web page, are shown in Fig. 4.6. As can be seen from Table 4.2, the set of test models includes rather small
meshes, as well as massive ones, consisting of many millions of primitives. Furthermore, the test data set contains
meshes with very simple geometry, such as the Nefertiti bust, as well as meshes with highly complex geometric
structures, such as the eulaema bee. For the meshes that didn’t have any colors, grayscale ambient occlusion
maps were created and used instead. The models Angel, Dragon and Nefertiti are courtesy of Fraunhofer IGD,
competence center for Cultural Heritage Digitization (CHD). The Cruciform model has been kindly provided by
the Cyprus Institute, as part of FP7-funded EU project V-MusT. The Bee model is courtesy of the Smithsonian
Institution9. The models Thai Statue and Lucy are courtesy of the Stanford Computer Graphics Laboratory.

Basic Test Setup. A basic overview of how the test setup of our case study is organized is shown within Fig. 4.7.
The experiment follows two goals: First, we would like to evaluate the compactness of the 3D thumbnails and 2D
image series, for a given viewport resolution and the according levels of detail for both evaluated representations.
Second, we would like to learn about the visual quality of the 3D thumbnails, compared to the 2D image series,
by measuring the deviation in image space. To do so, the 3D thumbnail representations are rendered them from
different points of view, in a very similar way to how the 2D image series are created from the full-resolution

9http://www.3d.si.edu

75

http://www.3d.si.edu

4. Compression and Encoding

Fig. 4.6.: Web page, showing 3D models from the case study (as 2D image series). From top left to bottom right:
Angel, Elephant, Dragon, Nefertiti, Cruciform, Bee, Thai Statue, Lucy, Santa. (Image: [LBFK15])

models. The rendered views are compared by computing the mean square error over all pixels, for each view
onto each model. Throughout the experiments, the viewport resolution inside the Web page has been set to
200× 200 pixels (Fig. 4.6). To avoid aliasing artifacts inside the image series, occurring with small viewports
and high-resolution mesh data, the image series have been rendered using a larger viewport (800× 800 pixels)
and then sampled down to their final resolution.

Selecting a Number of Images per Image Series. When comparing a 3D thumbnail with an image series in
terms of interactivity and file size, a crucial question is: What is the typical number of images in such a case? To
answer this question, we can considered multiple examples from the Web, which are shown in Table 4.3. Some
numbers are taken from the public demo page of the popular jQuery reel JavaScript library for animated image
series, as well as from the public company pages of Web Rotate 36010 and YouSpin11, and from the 3DNP demo
page (Sec. 4.1). As can be seen from Table 4.3, typical numbers vary between 10 and 252, while the large value
of 70 seems to be an outlier and only occurs for the high-quality YouSpin Gun demo, using a large size of 569
× 491 pixels, and showing only one object on the entire page. The 3DNP demo uses significantly more images
than the other ones, since it also provides the user with an additional degree of freedom for interaction (rotation
around two axes instead of one). However, the large amount of images leads to an overall file size of over 2 MB.
It is therefore already significantly larger than the other examples, and also larger than all of our 3D thumbnails,
hence we will limited ourselves to a more meaningful comparison against turntable-like image series with one

10http://www.webrotate360.com/360-product-viewer.html
11http://www.youspin.co/youspin/demo/360-spin/

76

http://www.webrotate360.com/360-product-viewer.html
http://www.youspin.co/youspin/demo/360-spin/

4.2. Case Study: 3D Thumbnails vs. 2D Image Series

Scene
#images

(360 deg. rotation) resolution

reel: Phone 10 200 × 200
reel: Vase 12 210 × 186
reel: Car 2 20 200 × 200
reel: Teapot 24 160 × 120
reel: Car 1 35 276 × 126
reel: Arrow 36 130 × 60
WebRotate 360: Shoe 36 400 × 264
YouSpin: Gun 70 569 × 491
3DNP: FRITZ!Box 252 300 × 300

Tab. 4.3.: Resolution (pixels) and number of images for turntable-like 360 degree viewers from the Web.

degree of freedom. From the examples considered, values within a range of 10 to 35 images seem to be typical
for 200 × 200 pixel viewports, therefore our experimental evaluation will use configurations with 8, 16 and 32
images.

3D Asset
(Full Resolution)

3D Thumbnail

Process Mesh
&

Generate Textures

Render
Views

Image Set
(Full-Resolution Asset)

Image Set
(3D Thumbnail)

Render
Views

Web App

Compress
(X3DOM Format)

Compress
(JPEG)

Web
App

Error Assessment

Fig. 4.7.: Schematic overview of the test setup of
the case study. (Image: [LBFK15])

Selecting Image Formats. To provide a fair comparison
of the resulting file sizes of both approaches (see Tab. 4.4),
image series were converted to JPEG format, using Im-
ageMagick’s mogrify tool with a 90% quality setting. Sim-
ilarly, the base color texture of each 3D thumbnail has been
stored as a JPEG image, using the same quality setting as
for the image series. Normal maps, however, were stored
using the loss-free PNG format.

Selecting Texture Resolution. One critical parameter,
with regards to the resulting file sizes of the 3D thumbnails,
is texture resolution (see Fig. 4.8). Since the size of the tar-
get viewport is known, it is possible to choose the texture
size according to the viewport dimensions. In an ideal case,
where the texture parameterization does not introduce dis-
tortion, and where we assume to look at a flat surface with
a projected size that is equal to the viewport dimensions,
the ideal texture resolution is identical to the viewport size.
Since the size of our final renderings is known to be 200 ×

200 pixels, and assuming that users will only zoom into the scene to a limited amount, we will evaluate the use
of textures at resolutions of 128 × 128 pixels, 256 × 256 pixels, and 512 × 512 pixels.

Comparing File Sizes. Table 4.4 shows an overview of the resulting file sizes, using different numbers of
images for the image series, and different texture resolutions for the 3D thumbnails. As can be seen, both
representations produce files of sizes within a comparable range. For each of the test meshes, the 3D thumbnail
representations becomes larger than the image series of 32 images, as soon as a texture of 512× 512 pixels is

77

4. Compression and Encoding

Model 8 images 16 images 32 images 3D thumbnail (1282) 3D thumbnail (2562) 3D thumbnail (5122)
Angel 34.4 68.9 138.0 35.6 90.3 262.8
Elephant 55.0 110.3 221.0 67.1 133.6 359.9
Dragon 28.1 57.0 114.1 55.4 127.3 363.4
Nefertiti 43.9 88.1 176.0 37.7 96.2 281.8
Cruciform 30.1 61.0 121.9 32.8 85.2 253.4
Bee 35.2 70.8 141.0 96.1 177.5 456.6
Thai Statue 36.5 72.9 145.8 71.6 157.1 455.5
Lucy 31.5 63.5 127.0 50.1 123.4 368.4
Santa 36.6 74.0 147.7 40.1 97 288.3

Tab. 4.4.: File size (KB) of the image series and 3D thumbnail representations (geometry and textures) for our
test models. For 3D thumbnails, texture sizes are indicated in brackets. The largest and smallest value
for each of both categories are printed in bold type.

used. The reason is that the size of the texture images, especially for the normal map, is usually the dominant
factor for the 3D thumbnails, as can also be seen in Fig. 4.8: even for the rather complex bee mesh, the normal
texture already consumes more bandwidth than the compressed geometry. For the image series, the elephant
mesh produces the largest file sizes. We think that one of the most important reasons why the image series of
the elephant mesh consumes so much space is the fact that the rendered, centered elephant model covers large
parts of the viewport, from all possible angles. In contrast, the thin, elongated dragon model, for example, has a
much smaller average screenspace footprint, and hence there is less information in the overall image, which in
turn leads to significantly smaller file sizes.

Fig. 4.8.: Components of three 3D
thumbnails’ file sizes.
(Image: [LBFK15])

Comparing Visual Quality. Besides the pure file size, an important
criterion for assessing the quality of 3D thumbnails is the visual error
that is introduced by simplifying the original data. To measure the
approximation quality of the 3D thumbnails, they were rendered from
32 different points of view, in a similar fashion as for the creation of
the image series (see Fig. 4.7). For each model and texture resolution,
the mean square error (MSE) has then be computed over all pixels
of the 32 views. The results are summarized in Tab. 4.9. As can be
seen from the table, increasing the texture resolution always reduced
the error. However, the magnitude of this decrease was not similar
for all test models. Another interesting finding is that the variation
of the MSE between the different meshes is far more significant than
its variation among different versions of the same mesh at varying
texture resolutions. The geometrically rather simple Nefertiti bust,
for example, showed a higher sensitivity to varying texture resolution

than the more complex elephant mesh. There can be two different reasons for this: geometric simplification and
distortion of the texture parameterization. An ideal algorithm for generation of 3D thumbnails would therefore
take both of these factors into account (see [COM98]). The error introduced by the texture resolution, as well
as by parameterization and geometric simplification, is visualized for the Nefertiti bust in Fig. 4.10. As can be
seen, the largest errors occurs at the silhouette, due to the geometric simplification, as well as in regions of high
texture detail, due to the limited texture resolution.

78

4.2. Case Study: 3D Thumbnails vs. 2D Image Series

Fig. 4.10.: Visual comparison of two 200×200 pixel views. Left: Full-resolution mesh (440,297 triangles, vertex
colors). Center: Simplified 3D thumbnail (786 triangles, 256× 256 pixel texture). Right image:
squared difference, multiplied by factor 8 for visualization. (Image: [LBFK15])

Model 128×128 256×256 512×512
Angel 5.55 5.28 5.11
Cruciform 4.70 4.40 4.32
Dragon 7.06 6.54 6.11
Elephant 10.58 10.44 10.35
Nefertiti 4.96 3.96 3.45
Bee 40.7 33.7 25.1
Thai Statue 39.9 31.1 23.4
Lucy 34.4 29.8 22.6
Santa 10.17 10.15 10.13

Fig. 4.9.: Mean square error, multiplied by 104 for read-
ability, for different texture resolutions. The
error was averaged over 32 views of each
model.

Comparing User Experience Finally, besides the
important points of file size and visual quality, an-
other important question remains: how different is the
user experience for both approaches? To provide an
optimum answer to this question, an extensive user
study would need to be conducted. While this is out
of the scope of this case study, it is possible to investi-
gate different ways of interacting with the 3D thumb-
nails: the user can navigate around the model, rotat-
ing smoothly around arbitrary axes, for example us-
ing classical turntable navigation. In addition, smooth
zooming is also possible. Furthermore, the user can
switch between different rendering modes, and dy-
namic shading and relighting is possible, as well as
exchanging materials. In contrast, image series do
only allow navigation with a single degree of freedom,
and dynamic effects that change the scene content or lighting are not possible. We can therefore state that 3D
thumbnails offer significantly more interaction possibilities than 2D image series of comparable file size.

4.2.3. Results & Discussion
The most important result of the presented case study is that we can encode 3D mesh data as a true 3D repre-
sentation (here called 3D Thumbnail), which has a filesize that is in a comparable range as it would be for 360
degree image series. Trading in a loss in visual quality against smooth, completely free 3D navigation and all
possibilities offered by dynamic shading, true 3D representations offer a good alternative to animated 2D image
series. However, it has also been shown that the visual quality of a 3D thumbnail highly depends on the quality
of the geometric approximation through simplification, as well as on the resolution and parametric distortion of
the texture maps. It has also been shown that the texture size for the normal maps is the dominant factor for the
overall size for a 3D thumbnail. Since the experiment used world space normal maps, it would be interesting to
investigate tangent-space normal maps as an alternative, which offer better compression (at the cost of storing
tangent frames as additional vertex attribute). In addition, the use of algorithms for normal map compression

79

4. Compression and Encoding

also seems promising to mitigate this problem. As can be seen from these first findings, a good pipeline for 3D
optimization must maximize the quality during all stages of the processing pipeline, involving simplification,
segmentation, parameterization, atlas packing and encoding for the Web. This is a rather challenging task that
requires high expertise and careful tweaking of several optimization parameters involved. Therefore, in prac-
tice, whether 3D thumbnails are a feasible solution or not also depends on the availability of a high-quality 3D
optimization pipeline (be it a fully-automatic one or a semi-manual that involves manual work by a 3D artist).

In summary, the reasons to prefer 2D image over 3D thumbnails can be summarized as follows:

• 2D images series, generated offline, have the advantage that they can display an object at any degree of
realism.

• Especially when a low number of images is used, 2D image series are more compact than 3D thumbnails.

• 2D image series are comparably easy to generate, while generating a 3D thumbnail requires the application
of several advanced mesh processing techniques.

Possible reasons to prefer 3D thumbnails over 2D image series are the following:

• 3D thumbnails provide a lot of possibilities for interaction, including smooth rotations and zooming and
dynamic lighting and materials.

• When smooth interaction is required, or for interaction along multiple degrees of freedom, 3D thumbnails
are generally more compact than 2D image series.

• For objects with simple shape and topology and not too many details, 3D thumbnails only need a rather
low vertex budget, being, for such cases, potentially even more compact than image series of comparable
quality.

Recent research has indicated that classical image-based error metrics, such as the mean square error, cannot
always be expected to be a good measure of what humans perceive as visual errors, and a much wider variety of
possible metrics exists [LM15]. Future work should therefore carefully investigate the best-suited error measure
(or multiple ones) for our case, based on the current state of the art. Finally, combining the advantages of both
approaches also seems an interesting direction for future research. For example, storing and transmitting an
image series with G-Buffers instead of final renderings could be an interesting approach for achieving real-time
rendering effects in 3D Web applications, such as dynamic changes of material and lighting, without actually
transmitting any 3D geometry.

80

4.3. Case Study: Efficient Encodings for 3D Mesh Data on the Web

4.3. Case Study: Efficient Encodings for 3D Mesh Data on
the Web

Besides all theoretical considerations regarding compression performance and decode speed, a general 3D mesh
data format for the Web will have to work well under different circumstances in practice. Especially, the follow-
ing aspects need to be investigated:

• Download Time

• Decode Time

• Behavior on different client devices

It is worth noting that these aspects cannot be captured by traditional metrics: For example, one may think that
filesize and download time are directly related, but this may not always be the case in practice: If a 3D container
format offers parallelized downloads, it may outperform a strictly sequential format that offers a smaller size. In
addition, the HTTP protocol allows for the use of GZIP compression, for example, which will bias the resulting
data volume to be transmitted, rendering a comparison based on pure file size irrelevant. One important way
to evaluate the efficiency of a 3D mesh data format is therefore to perform a case study, comparing different
candidate formats at different bandwidths, on different client devices. This section shows the results of such a
case study, and it is based on the respective paper by my coauthors and me [LWS∗13]. The case study has been
conducted in 2013, therefore its results have already been used for the design of subsequent formats, such as
SRC [LTBF14].

4.3.1. Web-specific 3D Formats
The following paragraphs presents the formats evaluated in our case study in greater detail, as well as the moti-
vation for selecting them.

Standard X3D. Encoding 3D mesh data directly in the text-based X3D format has several advantages. First,
X3D is an ISO ratified, open standard, supported by many different plugins, as well as by the plugin-free X3DOM
framework. Already in use for way longer than a decade, X3D versions of mesh data can be obtained with
relatively little effort using existing tools and converters. A drawback of the text-based representation is that
the corresponding files tend to become pretty large. Therefore, loading times can become unnecessarily long,
especially in a Web-based context where browsers have to parse the whole XML-based mesh data representa-
tion [BJFS12b]. On the contrary, the text-based representation is read by optimized, built-in browser function-
ality, and the JavaScript-based operations on the client side are kept minimal. In addition to that, the size of the
text files can be reduced significantly by applying HTTP’s GZIP compression (which utilizes LZ77 along with
Huffmann encoding), which helps to reduce download time. Finally, in terms of file size and compression perfor-
mance, an XML-encoded X3D representation is expected to behave pretty similar to a JSON-based format, as the
payload of the file is unstructured mesh data, which looks the same in both formats. Since JSON-based formats
have become popular as custom containers for 3D mesh data (for example, with early versions of Three.js), it
may be worth to include a similar approach into our case study. Therefore, we will evaluate the XML encoding
of the X3D format within our case study, being a representative text-based mesh data format.

X3DOM BinaryGeometry (BG). To overcome the main drawbacks of using a pure text-based X3D represen-
tation in a Web-based context, Behr et al. have proposed a binary format for 3D mesh data in the context of the

81

4. Compression and Encoding

X3DOM framework, entitled BinaryGeometry [BJFS12a] The general idea of externalizing unstructured mesh
data using binary containers, along with a lightweight, structured description in a human-readable format, was
enabled by the TypedArray specification, allowing to download and manipulate binary data directly in a Web
page using JavaScript. The idea was also adopted by the first glTF proposal, with the difference that glTF uses
JSON for the structured information instead of XML. Once the binary data chunks have been downloaded from
the server, they can be transferred directly to GPU memory. This is a huge advantage over compressed binary for-
mats, where some decoding operations need to be performed inside the JavaScript layer before the upload to the
GPU can be performed. Nevertheless, this direct GPU upload comes at the cost of massively limiting the com-
pression capabilities. The X3DOM BinaryGeometry format allows data reduction by supporting indexed triangle
strips, which have to be converted from the triangle data during preprocessing. It also allows to reduce the size
of the binary containers by using a quantization of coordinates to a 16 bit integer range. This introduces an ad-
ditional translation and scale operation to obtain correctly transformed floating-point positions during rendering,
which can, however, be realized efficiently by simply adapting the corresponding Model-View Matrix [LCL10].
Within our experiments, we will made use of both optimizations, stripification and quantization. Because of the
interesting property that it does not involve any client-side decode operations, we chose to evaluate the X3DOM
BinaryGeometry format as a representative format for uncompressed binary mesh data transmission.

OpenCTM. The Open Compressed Triangle Mesh (OpenCTM) format is an open binary format for 3D mesh
compression [Gee09]. It has the great benefit of offering good compression rates, while still providing a relatively
fast decompression for native desktop applications. In contrast to formats like VRML/X3D, OpenCTM is solely
concerned with encoding the actual 3D mesh data and not encoding any scene description information, such as
transformations or interactive aspects. From the three available modes of OpenCTM (RAW, MG1 and MG2),
we will use the most compact MG2 encoding throughout our experiments. The compact binary encoding mainly
builts on entropy reduction and LZMA entropy coding, which combines LZ77 with Markov chains. To reduce
the size of the compressed connectivity data, the indices representing the triangles are sorted by the smallest
index of each triangle. For efficient LZMA compression, the resulting list is then delta-coded with a very simple
scheme which, however, includes a case differentiation during coding and decoding. The model is furthermore
subdivided into several uniform cells, and the position of each vertex relative to the corresponding cell origin
is computed. The resulting cell-space coordinates are sorted by their x-coordinate and then delta-encoded, nor-
mals and texture coordinates are delta-encoded as well. As a result, entropy is significantly reduced and LZMA
coding can efficiently compress the data. Moreover, vertex data can be stored in a quantized integer format,
resulting in good compression rates which are expected to be superior to more simple (quantized integer or orig-
inal floating-point) binary formats, like glTF or X3DOM’s BinaryGeometry. However, the OpenCTM format is
neither supported by any browser natively, nor are there any plug-ins available. Therefore, platform-independent
Web applications using OpenCTM will first have to decode the compressed data inside the JavaScript layer
before being able to upload it to the GPU for rendering. It is therefore an interesting format to investigate, re-
garding the trade-off between compactness of the compressed representation and decode time. Within our case
study, OpenCTM is the only compressed binary mesh data format. We will also investigate a modified version of
the OpenCTM format, which produces 25% larger files on average, but also needs only 20-40% of the original
decompression time by exploiting the GZIP compression capabilities of HTTP.

WebGL-Loader (Chun). The Google Body project, which was aiming at a browser-based inspection of human
anatomy, resulted in WebGL-Loader, a minimalist JavaScript library for compact 3D mesh transmission [Chu12a].
The first step during encoding is a vertex cache optimization on the index list [For06]. After an additional op-
timization for the pre-transform vertex cache, indices are then delta-coded with respect to the current high wa-

82

4.3. Case Study: Efficient Encodings for 3D Mesh Data on the Web

termark. Instead of a simple delta encoding, a more advanced parallelogram prediction is used for the attributes
(see [TG98]). It predicts the next vertex position by constructing a parallelogram with the last three vertices of
a triangle strip. The normals are predicted using the cross product of the edges of every triangle. Finally, all
the attributes are quantized to less than 16 bit and stored in a UTF-8 text file. The UTF-8 file format is a good
alternative to binary formats because it can be parsed very quickly by the browser, while also providing variable-
length encoding. The sorting and delta encoding of the algorithm achieves a comparatively good compression
and, combined with the native GZIP implementation of the browser, realizes fast decompression without the
need for additional plug-ins. Because of the interesting property of building on browser features like UTF-8 text
decoding and GZIP, the WebGL-Loader format will be included in our experimental comparison.

4.3.2. Experimental Setup

Fig. 4.11.: Textured test data. Top: 3D scans.
Bottom: Game models.
(Image: [LWS∗13])

We will see an evaluation all of the mentioned candidate formats
for 3D mesh encoding in terms of compression performance and
decompression time, using a desktop machine with i7 CPU at 3.4
GHz and 32GB RAM, as well as an iPad 3 tablet.

Figure 4.11 shows the four different test models used in our ex-
periments. The tractor and backyard scene models have been
kindly provided by Crytek as part of the CrySDK. The bird model
is courtesy of the MIT CSAIL database. The Pharao model is
courtesy of the EU project 3D-COFORM. The pharao model and
the bird model (top row) are regularly sampled, detailed 3D scans
of real-world objects. In contrast, the tractor model and the back-
yard scene (bottom row) are carefully optimized game models,
created by a game artist, with the polygon count being reduced
to a minimum, preserving just the most important features. All
models are textured and contain per-vertex normals.

In order to evaluate the performance on both of our test devices, a
simple JavaScript-based Web application will be used. Different
bandwidths will be simulated using a respective application on
the server, which is able to artificially limit the bandwidth used

for transmission to a given value. The network used is a company intranet, which means that the latency has been
rather low in all cases. However, this is not an issue, as we will only evaluate continuous downloads of mesh
data (downloads of static content), but no active client-server communication, where round-trip time would be
relevant.

4.3.3. Compression Rate
Table 4.5 shows a comparison of the file sizes of our test models, using the different encoding formats. As
today’s browsers support the HTTP option to compress files for transmission using GZIP, we have included
GZIP-compressed variants for each encoding method. GZIP uses LZ77 (a sliding-window dictionary coder) to
eliminate repeated character sequences, and it utilizes Huffman encoding for the remaining sequence. As can be
seen from the table, file sizes differ quite drastically among the various file formats. As expected, the text-based
X3D format produces the largest files. However, after GZIP compression they are roughly a third of their original
size. The smallest files are generated using the OpenCTM format, which already uses LZMA compression and
therefore does not benefit at all from additional GZIP compression. X3DOM BinaryGeometry (BG) and the
WebGL-Loader (Chun) are ranked between those two extremes, and they provide files of approximately similar

83

4. Compression and Encoding

Model #Tris (Vertices)
X3D BG CTM-G Chun CTM

RAW GZIP RAW GZIP RAW GZIP RAW GZIP RAW GZIP

Backyard 4,615 (2,625) 240 71 79 46 147 43 62 43 31 31
Pharao 16,866 (8,437) 618 227 185 151 495 116 149 111 81 81
Tractor 49,480 (27,251) 2,296 617 646 431 1,539 361 506 301 259 259
Bird 184,472 (69,948) 7,330 2,454 1,958 1,647 5,465 1,197 1,453 1,020 947 948

Tab. 4.5.: Size of test models, given in KB, without and with additional GZIP compression during transmission
via HTTP. Texture images are sent separately for all formats, using standard image formats, hence their
size is not contained in this table.

sizes. Still, WebGL-Loader strongly benefits from GZIP compression and is therefore able to offer superior
compression rates.

Since the JavaScript-based decoding of the LZMA-compressed OpenCTM format is expected to consume a lot
of time (see Sec. 4.3.4), we can replace the final LZMA part of the OpenCTM encoder with server-side GZIP
compression over HTTP. Results are included in Table 4.5, labeled CTM-G. As can be expected, this leads to
less impressive compression rates. Resulting files are, in the GZIP-compressed form, still more compact than
those using the X3DOM BinaryGeometry encoding, but less compact than the ones using the GZIP-compressed
WebGL-Loader format. However, as will be shown in Sec. 4.3.4, the result is expected to decode much faster
after the JavaScript-based LZMA decompression step has been removed.

4.3.4. Transmission and Decompression Speed

Model X3D BG CTM-G Chun * CTM

Backyard 25 0 14 2 49
Pharao 77 0 24 4 127
Tractor 248 0 60 8 353
Bird 880 0 190 25 1139

Model X3D BG CTM-G Chun * CTM

Backyard 288 0 452 57 1,455
Pharao 835 0 1,563 144 4,541
Tractor 3,008 0 4,760 470 14,006
Bird 11,055 0 16,863 1,464 47,786

Fig. 4.12.: Isolated decode times (ms). Top: Desktop
PC. Bottom: iPad 3. WebGL-Loader (*) of-
fers progressive decoding, which can be per-
formed in parallel with the download.

The times needed for decompressing the test data on
the desktop machine and on the iPad 3 are summa-
rized in Fig. 4.12. The X3DOM BinaryGeometry
(BG) format does not employ any client-side parsing
or decompression of the actual mesh data. Instead, the
downloaded buffers are directly pushed to the GPU,
therefore the decompression time is zero for all cases.

The fast decompression of the WebGL-Loader format
offers the fastest decoding. Even on the iPad, decode
times stay relatively moderate. Additionally, it has to
be mentioned that WebGL-Loader decodes data pro-
gressively during download, an advantage which is
not captured when analyzing the isolated time that
was spent on decoding. It is therefore worth noting
that WebGL-Loader is able to provide slightly better
results in practice than the sum of download time and
decode time would indicate.

In contrast to the fast BinaryGeometry and WebGL-
Loader formats, all other methods perform poorly

when decoding larger models on the iPad. Especially the JavaScript implementation of the OpenCTM format
using LZMA compression is not feasible in practice, even for moderately-sized meshes, due to high decode times

84

4.3. Case Study: Efficient Encodings for 3D Mesh Data on the Web

500 1000 2000 4000 8000 16000 32000 64000
20

200

2000

20000

X3D

BG

CTM-G

Chun

CTM

Bandwidth (kbit/s)

S
ta

rt
u

p
 T

im
e

 (
m

s
)

500 1000 2000 4000 8000 16000 32000 64000
20

200

2000

20000

Bandwidth (kbit/s)

S
ta

rt
u

p
 T

im
e

 (
m

s
)

Fig. 4.14.: Combined download and decode time (tractor model). Left: Desktop PC. Right: iPad 3.
(Image: [LWS∗13])

of multiple seconds. Our OpenCTM variant relying on GZIP (CTM-G) performs significantly better, especially
on the desktop machine. Nevertheless, it is outperformed by the text-based X3D format on the iPad 3.

X3D BG CTM-G Chun CTM

∆/s 203K NA 707K 5,022K 132K
b/v 223 149 120 110 83

Fig. 4.13.: Average compression and decompression
performances, using a JavaScript-based im-
plementation on a desktop machine.

It is also worth to analyze the average compression
rate and decompression performance, using the es-
tablished metrics of stored bits per vertex (b/v) and
decompressed triangles per second ∆/s on a Desktop
machine, as shown in Fig. 4.13. This allows a com-
parison to existing, classical approaches from litera-
ture. Projected to today’s CPU power, the estimated
results from mesh compression literature are in an or-
der of magnitude of roughly 10K - 300K ∆/s, and the
amount of bits per vertex lies in a range of roughly 10
- 150 (Sec. 4.1.2). On the one hand, it can hence be seen that methods investigated already provide a relatively
fast decoding compared to classical approaches from the literature, even though decoding is based on JavaScript
(and not using a native implementation). This especially holds for BinaryGeometry (zero decode time) and for
WebGL-Loader (decode rate of over 5K ∆/s). On the other hand, the compression rate achieved through the eval-
uated formats is almost one order of magnitude worse than for most traditional mesh compression approaches,
which can achieve rates of just a few bits per vertex.

The most relevant measure for the quality of the real-world user experience is the loading time of the 3D Web
application. This loading time is a combination of two components, decode time (depending on the power of
the client device) and download time (depending on the available bandwidth). Figure 4.14 illustrates loading
times of the tractor model for the two evaluated client devices, using various transmission bandwidths. Other test
models produced similar results (Fig. 4.15). Since the decode times of the different test formats are varying in
more than an order of magnitude, a logarithmic scale was used for visualization purposes.
The WebGL-Loader format provides very good results on both devices and throughout all bandwidths, as it
provides a compact encoding and at the same time fast decompression. The BinaryGeometry approach is the

85

4. Compression and Encoding

Fig. 4.15.: Download and decode time (ms) for the Bird model at fixed connection speed of 2.8 Mbps on a
desktop PC (left) and an iPad 3 (right). (Image: [LWS∗13])

one which works best on the iPad 3, as the data does not need to be decoded on the client’s CPU. On the
desktop machine it still performs well, although being outperformed by the WebGL-Loader format, which has
better compression capabilities. The excellent compression rate of the OpenCTM format only pays off at small
download bandwidths, using a relatively powerful desktop machine. Our GZIP-compressed variant, CTM-G,
provides better results. On the desktop machine, it is superior to the text-based X3D encoding, whereas this
relation is inverted on the iPad, as soon as a transmission bandwidth of more than 2 Mbit/s is available.

At the time the case study has been conducted, the average global connection speed was reported to be about
2.8 Mbps [Aka12]. This bandwidth is highlighted with red lines in Fig. 4.14, and it can be seen that the format
which performs best for this case on the Desktop machine is the WebGL-Loader format. On the iPad 3, it
is the BinaryGeometry approach. However, the average connection speed has drastically increased within the
past few years. For example, the recent Q1 2017 akamai state of the internet report states an average global
connection speed of 7.2 Mbps, while most industrially well-developed countries exceed this value significantly
(Examples: South Korea 28.6 Mbps, Sweden 22.5 Mbps, USA 18.7 Mbps) [Aka17]. The decoding power of
devices has not increased by similar factors, therefore it is worth to consider our case study’s results for higher
bandwidths, as shown in Fig. 4.14, when designing a transmission format for 3D mesh data on the Web. For
higher bandwidths, the result for the Desktop PC is pretty clear: WebGL-loader provides the fastest loading,
followed by BinaryGeometry. On the iPad3, BinaryGeometry is the clear winner, followed by WebGL-loader -
in contrast to the Desktop PC, this difference becomes very large for higher bandwidths.

Another example for combined download and decode time is shown in Fig. 4.15, this time for the bird model,
and using a fixed connection speed of 2.8 Mbps (the reported global average at the time this case study has been
conducted). The results are similar to the ones shown for the tractor model in Fig. 4.14: WebGL-Loader (Chun)
and BinaryGeometry are the best choice, whereas WebGL-Loader is performing visibly better than BinaryGe-
ometry on the Desktop PC. As can be seen from the visualization of both parts of the loading time, decode time
and download time, download time is clearly the limiting factor on the Desktop PC, for all evaluated formats.
However, on the iPad 3, the decode time becomes by far the most critical component for X3D and OpenCTM
(both variants). WebGL-Loader still performs well since the time spent on decoding stays relatively short, thanks
to the design of the format, exploiting existing browser capabilities for fast decoding.

4.3.5. Results & Discussion
As shown within the case study we investigated, we can identify two stages that are necessary to transfer a 3D
model to a user’s client device and to present it. In sequential order, these are Download Stage and Decode Stage.
Both of these stages have to be taken into account when measuring the performance of a compression algorithm.
On the one hand, the available connection speed is still the limiting factor, which suggests that dedicated 3D

86

4.3. Case Study: Efficient Encodings for 3D Mesh Data on the Web

compression methods should be applied in order to allow for a more efficient transmission. However, for client
devices with limited processing power, like mobile devices, the time needed to decode a complex, compressed
format like OpenCTM can often exceed the time that would be needed to download the uncompressed binary
data.

These results imply that, for users with rather fast connections and mobile clients, one should try to minimize
the decode time where possible. This can be achieved by transferring the mesh data directly as binary data,
like it is done by X3DOM’s Binary Geometry or by glTF. Otherwise, the trade-off between a fast download of
compressed data and the decoding time that is necessary has to be carefully evaluated.

From the results of the case study presented in this chapter, one can derive the following recommendations for a
standard format for 3D mesh data delivery on the web (such as X3D 4.0 or glTF):

• Mesh data which can directly be mapped to GPU structures, like vertex positions and indices, should be
stored in binary chunks. Those chunks should be separated from the structured mesh information (for
example, from materials or transformations) and - in an ideal case - directly be uploaded to the GPU. For
most use cases, mesh data can be stored in a quantized form, e.g. by using 16 bit attributes, without a
significant loss of quality, while still avoiding any CPU-based decoding steps.

• Compression algorithm should be carefully designed with respect to the additional decode time, especially
for mobile platforms. A good strategy is to design a format in such a way that it exploits browser’s existing
compression capabilities, for example by using delta encoding along with GZIP.

• Depending on the available bandwidth budget, as well as on the expected processing power of the client, a
corresponding profile should be available to minimize the overall transmission time. A mobile profile, for
example, could optimize for decoding speed instead of file size. A desktop profile could exploit browser’s
built-in capabilities in order to obtain a more compressed representation that still allows for fast decoding.

Since the case study has been published, glTF has become the most popular format for 3D mesh transmission
on the Web. From the performance point of view, this is not surprising, as its way of encoding mesh data is very
similar in spirit to X3DOM’s BinaryGeometry, which was shown to be one of the two most successful formats
evaluated. The other successful format, WebGL-loader, has not been used by many applications, but it is being
superseded by another, new popular format, also being primarily created by people working at Google, namely
Draco [ZSG∗17].

One aspect that has not been considered within the case study is the potential speedup over the evaluated
JavaScript-based decoding through technologies such as WebAssembly12, aiming to achieve almost native ap-
plication performance by using an assembly-like text format for executable code, and a corresponding binary
format, for performance-critical code in Web pages. The Draco mesh compression method makes use of this
technology to speed up decoding in browsers that support WebAssembly. Therefore, and because of its general
design of being a dedicated format for efficient 3D mesh compression on the Web, it will be interesting to con-
duct another experiment similar to the presented case study, but using today’s browser technology and involving
Draco.

12http://webassembly.org

87

http://webassembly.org

4. Compression and Encoding

4.4. The Shape Resource Container (SRC) Format

(a) 17% triangles,
low-resolution texture

(b) 86% triangles,
low-resolution texture

(c) 86% triangles,
high-resolution texture

(d) 100% triangles,
high-resolution texture

Fig. 4.16.: Streaming of mesh data, progressively encoded with the POP Buffer method, using the SRC container
format. The number of HTTP requests is minimized, while still allowing for a progressive transmis-
sion of geometry and texture information by using interleaved data chunks. The SRC format is highly
flexible, well-aligned with GPU structures, and can easily be externally addressed. (Image: [LTBF14])

(Image: [LTBF14])

Various efforts have been made in order to design file formats for transmission
of 3D geometry, for the use with high-performance 3D applications on the Web
(see sections 4.1, 4.3). The ultimate goal is to design a solution that scales well
with large data sets, enables a progressive transmission of mesh data, eliminates
decode time through direct GPU uploads, and minimizes the number of HTTP
requests. Notable results include WebGL-Loader, X3DOM BinaryGeometry,
and glTF (Sec. 4.3). However, none of the mentioned formats supports a pro-
gressive streaming of the actual binary mesh data. While X3DOM provides an
experimental implementation of progressive geometry transmission, using POP
Buffers13, it only supports batches of index and vertex data via multiple HTTP
requests, which becomes a huge drawback with larger scenes. The Khronos
group’s glTF format, on the other hand, is able to deliver an arbitrary number of
mesh data buffers within a single file, but it completely lacks any mechanisms
for progressive transmission.

One major drawback that prevented an efficient progressive streaming so far was
the lack of support for progressive downloads of binary data in browser’s im-
plementations of the XmlHTTPRequest (XHR) specification14. In 2014, when
SRC has been designed, there was already a W3C draft for the so-called Streams API15, aiming to extend XHR to
solve this problem. The inset figure on the right illustrates the advantage of using the Streams API, compared to
using the basic XHR method: While a progressive download of a binary mesh data container would be possible
by using multiple XHRs, this would also lead to multiple requests issued by the client, and a server will have to
reply to each of them separately. This introduces a massive overhead for additional HTTP requests. In contrast,

13The POP Buffer method is explained in detail in Sec. 5.3. In the context of SRC, a detailed understanding is not necessary, all we need to
know here is that POP Buffers allow us to add more details while the binary mesh data is streamed.

14https://xhr.spec.whatwg.org/
15https://streams.spec.whatwg.org/

88

https://xhr.spec.whatwg.org/
https://streams.spec.whatwg.org/

4.4. The Shape Resource Container (SRC) Format

an API tailored towards progressive streaming will only involve a single request, but multiple notifications on
the client side. Currently, in practice, the new Fetch API16, already supported by most browsers, is about to
replace XHR and the Streams API, but this does not affect the design of SRC, since the usage of Fetch for pro-
gressive streaming is quite similar to Streams and XHR. Together with Blast, SRC has been the first real-world
3D mesh data format on the Web that is able to efficiently exploit such an API for streaming of binary mesh
data [LTBF14, SSS14]. Finally, there is no established format that allows an interleaved transmission of texture
data and mesh data. As a consequence, the point in time at that a textured mesh is fully loaded depends on at
least two different, independent downloads, and it is therefore rather random.

Within this section, we will investigate the Shape Resource Container (SRC) format, a file format for progressive
transmission of 3D geometry and texture data. The benefits of SRC over other formats for 3D mesh data on the
Web can be summarized as follows:

• SRC introduces buffer chunks as a new concept for progressive, interleaved transmission of indices, vertex
attributes, and even textures, with an arbitrary small number of HTTP requests.

• SRC allows to efficiently speed up progressive texture retrieval, by including support for compressed
texture data into the format.

• SRC containers can easily be embedded, and their content can be efficiently addressed and used for data
composition. We will explore this possibility using the example of X3D scenes, by designing a new,
minimalist X3D node.

Before discussing the SRC format, we will first have a brief look at the specific aspect of data composition in
related formats, namely X3DOM, XML3D and glTF.

X3DOM Binary Geometry. A major drawback of existing declarative 3D mesh containers, in XML3D as well
as in X3DOM, is the missing ability to merge multiple drawable submeshes of a single mesh into a single shape
node [BEJZ09, SKR∗10]. This might be necessary because of several reasons, including, for example, view-
dependent streaming and geometry refinement, or the decision to use 16 bit indices during rendering (meaning
that meshes with more than 216 vertices need to be subdivided). Consider, for example, the armadillo model
from Fig. 4.17, which has been subdivided into three different chunks (in this particular case, the main reason
was the mentioned 16 bit index limit). In an X3DOM scene using BinaryGeometry nodes to represent mesh
data, this subdivision is also reflected in the declarative layer, by using three Shape nodes, each containing a
separate Appearance node and a separate BinaryGeometry node [BJFS12a]. As a consequence of this separation,
X3DOM does not allow to encode and transmit the three sub-meshes all in one file. Furthermore, an X3DOM
author must maintain three different Shape, Geometry and Appearance nodes, instead of just one. Finally, this
tight coupling of the rendering representation with the scenegraph and the transmission format also potentially
leads to large, cluttered HTML files. The proposed ExternalGeometry nodem, which is able to link to SRC
containers, solves this problems by decoupling the number of transmitted files from the identifiable Shape nodes
within the X3D scene (Fig. 4.22).

XML3D Mesh Data Composition. The XML3D framework includes a powerful data flow definition concept,
entitled XFlow [KRS∗13]. The concept is based on a data element, which represents a mesh data table with
data fields (for instance, indices, vertex positions, vertex normals and vertex colors). Since all data elements
can include other data elements, and since they may also add own definitions for single data fields, dynamic

16https://fetch.spec.whatwg.org/

89

https://fetch.spec.whatwg.org/

4. Compression and Encoding

composition, overriding and re-use of mesh data among several mesh instances is possible. Still, until the advent
of Blast, appearing at the same time as SRC, there was no binary format for arbitrary pieces of mesh data,
overridden attribute arrays had to be specified as strings. This in turn caused huge decode overhead, and it led to
unnecessarily large HTML files. Furthermore, a progressive transmission of mesh data, as it is enabled by SRC,
has not possible within XML3D before the advent of Blast. As can be seen, in the context of XML3D, Blast has
served a similar purpose as SRC does in the context of X3DOM, and support for both containers could probably
be implemented in both frameworks without modifying any of the two proposed formats.

glTF. A glTF scene description, described by a piece of text in JSON format, is always divided into several
parts. The buffer layer contains a basic, raw data description, usually by referring to an external binary file,
which is, in a typical client-side implementation, represented as an ArrayBuffer object, being the raw result of
an JavaScript XHR or Fetch operation which was used for the respective download. On top of that buffer layer,
a bufferView layer manages several sub-sections of buffer objects, where each sub-section is usually represented
as a separate GPU buffer on the client side. A buffer might, for example, be subdivided into two separate
bufferViews that each map to a GPU buffer, one for index data and one for vertex data. On top of the bufferView
layer, there is a layer with accessor objects (representing the graphics API’s views on bufferView objects) that
realize indices and vertex attributes. Two different accessors (for example, one for normal data and one for
position data) might then refer to different parts of a single bufferView, potentially in an interleaved fashion.
The highest hierarchical level of mesh data within glTF is represented by the mesh layer. A mesh entry always
refers to one or more attribute accessors and index data, along with a material and a primitive type used for
drawing (e.g., TRIANGLES). Because of its straightforward, structured design, mapping very well to client-side
GPU structures, glTF is an ideal solution for many 3D Web applications. However, using glTF to realize high-
performance X3D scenes with progressive loading, as enabled by SRC, is not possible, because of three reasons.
First, the glTF specification does not support any form of progressive transmission of mesh data. Second, the
glTF specification does not allow for an interleaved transmission of mesh geometry data and texture data, and it
does not support any GPU-friendly texture encoding. Third, the JSON-based scene description of glTF partially
overlaps with existing concepts in X3D (such as material descriptions and node hierarchy). Because of the
latter aspect, there is no possibility to ensure that a glTF container will solely contain mesh data. For example,
the scene may contain animations, which contradicts the X3D concept of a Shape node having a static local
bounding volume. It would be interesting to investigate the possibility to use glTF as a supported format for the
more powerful Inline node, in order to integrate glTF content into X3D scenes. However, within this section, we
will not follow this approach but instead discuss the SRC format as an alternative, describing solely the mesh
data and being compatible for integration into several declarative 3D frameworks with minimal effort.

Besides data composition, the SRC format allows for progressive transmission of geometry and textures, as well
as for a compressed encoding of texture data. We will therefore briefly review those concepts within the next two
paragraphs.

Progressive Geometry Transmission. Progressive Meshes, as originally proposed by Hoppe et al., have been
extensively studied within the past two decades, with a strong focus on compressing progressively transmitted
mesh content, in order to optimize the rate-distortion performance (sections 4.1, 5.1). Especially for 3D on the
Web, there are at least two interesting alternatives to progressive meshes that allow a progressive, direct upload
of downloaded mesh data to the GPU without any decode overhead. The first one is to converting the mesh to
be encoded to a Streaming Mesh [IL05]. This approach reorders the input mesh data in such a way that it can be
processed in a sliding window fashion, using a finite, fixed-size memory buffer. This is not only useful for out-
of-core mesh processing algorithms, but it also gives clients a guarantee that indices never refer to vertices that

90

4.4. The Shape Resource Container (SRC) Format

have not been received yet. It therefore enables a simple progressive transmission of mesh data, by appending
downloaded data directly to existing buffer content. In a similar spirit, the POP Buffer algorithm reorders mesh
data with the aim of straightforward progressive transmission (Seec. 5.3). The reordering scheme is based on the
fact that a large amount of triangles becomes degenerate when performing aggressive quantization. By rendering
triangle data with increasing precision, and sending, for each precision level, only the non-degenerate triangles,
a progressive transmission of the whole mesh data is achieved. The second row of Fig.4.17 shows an example
using this technique. Nevertheless, the high speed and lack of CPU-based decoding steps comes at the cost
of a rather bad rate-distortion performance, compared to progressive mesh methods that explicitly adapt the
topology of the mesh (e.g., compared to the approach of Lavoué et al. [LCD13]). For streaming meshes, there
is currently no Web-based rendering library that applies this method for progressive transmission. The POP
buffer method has been experimentally implemented inside the X3DOM library. However, the corresponding
X3DOM POPGeometry node uses a set of child nodes to represent the different precision levels, and each chunk
of triangle data is loaded from a separate file. This obviously leads to an unnecessary large number of HTTP
requests, and it furthermore significantly increases the size of the application’s HTML page. SRC allows to
use a simple progressive streaming method, such as Streaming Meshes or POP Buffers, without the need for
additional, separate requests. This is made possible by a special layer of bufferChunk objects, providing chunked
progressive updates for binary mesh data buffers.

Texture Compression. Texture compression can drastically reduce the amount of memory textures require,
which is especially helpful for transmission. Texture compression support of WebGL allows the direct upload of
compressed texture data to the GPU without the need for an additional unpacking or decoding step. The Khronos
Group has proposed WebGL extensions to support several texture compression formats. Currently, the most
popular extension adds support for the patented S3TC texture compression algorithms 17. This group of lossy
compression formats is labeled as DXT1 through DXT5, and it achieves a fixed compression rate of 6:1. Since
most of WebGL-enabled browers support this extension, it is worth to investigate possibilities to integrate it into
mesh transmission formats for the Web, which is what the SRC format does.

4.4.1. Bulding Blocks of the SRC Format

The name of the format we are discussing here, Shape Resource Container (SRC), was chosen for different
reasons. In the 3D real-time graphics community, especially in the context of the X3D standard, the name Shape
denotes a 3D object with all its properties, such as mesh geometry and material, including textures. The goal of
SRC is to store exactly this information: mesh geometry, but basic material properties and texture images. This
allows to use a single SRC container in order to transmit a virtual 3D object for rendering in a client application.
Explicitly not part of the format are properties of the scene or environment, such as lighting or camera properties.
Note that this design, published by my coauthors and me in 2014, has naturally evolved to be the most popular
usage pattern for glTF 2.0 content as well: Microsoft Windows Tools, facebook and Sketchfab all support glTF
import, but they usually apply their own camera positioning and lighting environments, instead of trying to load
the respective data from glTF scene description18. This trend of using glTF 2.0, being the most popular 3D
format on the Web nowadays, moving into a similar direction as proposed earlier by SRC confirms the real-
world relevance of the original SRC proposal. Apart from this aspect of SRC being designed as a container
for Shape Resources, it also owes its name to the source attribute of the HTML image tag, abbreviated as src
(), and it is furthermore inspired by the source tag known from HTML5

17http://www.khronos.org/registry/webgl/extensions/WEBGL_compressed_texture_s3tc/
18While glTF 1.0 provided possibilities to include custom lights, this is not possible any more with glTF 2.0

91

http://www.khronos.org/registry/webgl/extensions/WEBGL_compressed_texture_s3tc/

4. Compression and Encoding

HEAD LOD_0 LOD_1 LOD_2

HEAD LOD_0 REFINEMENT_1

HEAD SUBMESH_0 SUBMESH_1 SUBMESH_2

REFINEMENT_2

GPU Memory

GPU Memory

GPU Memory

Mesh / Buffer Properties

Vertex Data

Index Data

Transmitted
File

Transmitted
File

Transmitted
File

Fig. 4.17.: Transmission and GPU storage of mesh data, for different data subdivision schemes. From top to
bottom: Sub-Meshes, Discrete LOD, Progressive LOD. In the third case, all received chunks are pro-
gressively concatenated to larger GPU buffers. This efficient, yet flexible coupling of transmitted data
with its GPU representation is not possible with any existing transmission format. (Image: [LTBF14])

92

4.4. The Shape Resource Container (SRC) Format

video embedding. The idea is that SRC content can be as easily integrated into a declarative 3D or 2D context as
it is already known from images or videos.

The following paragraphs describe the building blocks of which the SRC format consists. We will first explore
the basic motivation and features of the format itself and then, within Sec. 4.4.2, discuss its integration into X3D
scenes, including the aspect of dynamically compositing mesh data in X3D with the help of SRC (using the
ExternalGeometry and Source nodes).

Structured Mesh Property Encoding. Instead of re-inventing the wheel, SRC is based on glTF 1.0, which
already has the great advantage that its hierarchical scene data structure maps to corresponding GPU structures on
the client side in a very straightforward manner. It furthermore allows multiple meshes to freely share a random
number of accessors to index and vertex data, which is not easily possible with other formats (such as X3DOM’s
BinaryGeometry, for example). This aspect is very important when compositing and partial re-use of mesh data is
desired. However, several aspects of glTF were found unusable in the context of SRC, therefore raising the need
for further adaption. As mentioned earlier, information about lighting, or about the scene hierarchy, did not find
its way into the SRC format, since SRC is supposed to transport only mesh geometry and material information
(including textures). Besides that, some modifications had to be made to existing glTF 1.0 concepts, for example
by differentiating between indexView and attributeView objects. This allows a progressive transmission using
the POP Buffer method or comparable approaches, which have to distinguish between progress events during
streaming of the attributes and progress events during streaming of the indices. Figure 4.18 shows an example
of a JSON-based encoding of the structured part of an SRC container (the so-called header). The file contains a
single mesh with a single texture, where the geometrical data and the texture data is interleaved and transmitted
progressively, as shown in Fig. 4.16. Additional meta objects are used to specify application-dependent meta
data (for glTF, a similar concept called extras has been introduced). One global meta object contains general
meta data about the file content, such as a short textual description. Other meta objects are directly attached to
the mesh and texture objects. As the POP Buffer method has been used allow for a progressive transmission of
the triangle data, it was necessary to specify also the progression levels (in vertices), which are associated with
the mesh, via its meta object. If a client does not support the POP Buffer method, it will not most likely also not
understand this annotation, but this is not a real problem. In this case, the client will simply download and render
the chunks without the dynamic quantization proposed by the POP method (to be performed in the shader during
rendering), which will lead to the same visual result for the final mesh.

Supporting Quantized Vertex Attributes. When SRC was designed, glTF did not offer support for quantized
vertex attributes (in contrast to X3DOM’s BinaryGeometry, for example). Later, a corresponding glTF extension
was proposed, largely based on the SRC format [LSTT15]. The modifications that SRC applies to glTF in order
to add support for quantized attributes are minimal. All information that is necessary is the floating-point range
to which the quantized attribute values should be mapped. For example, for a mesh using 16-bit unsigned integer
values in a standard range [0,216− 1] for the vertex positions, the bounding box used for quantization has to
be transmitted, allowing the client to reconstruct the original floating-point range (with a small loss in precision
introduced by the quantization). In glTF, there are already min and max attribute available for each mesh attribute
accessor, specifying extreme values within the corresponding buffer, so one idea could be to use these existing
attributes to store the bounding box information. This, however, is not easily possible, since glTF requires these
attributes to truly represent the minimum and maximum values of the respective arrays, which would be the
extreme values of the quantized data, but not of the original floating-point data. Moreover, if cracks should
be avoided, data within all submeshes must be quantized with the same bounding box scale [LCL10]. This
means that the bounding box used for quantization is not necessarily always identical to the bounding box of the

93

4. Compression and Encoding

{
"meta":{

"description":"A simple example of an elephant model"
},
"bufferChunks":{

"chunk0":{
"byteOffset":0,
"byteLength":23448

},
"chunk1":{

"byteOffset":23448,
"byteLength":1849344

},
"chunk2":{

"byteOffset":1872792,
"byteLength":7669440

},
"chunk3":{

"byteOffset":9542232,
"byteLength":4767845

},
"chunk4":{

"byteOffset":14310077,
"byteLength":1551744

}
},
"bufferViews":{

"attributeBufferView0":{
"byteLength":11070528,
"chunks":[

"chunk1",
"chunk2",
"chunk4"

]
}

},
"textureViews":{

"elephantTexView":{
"byteLength":4791293,
"chunks":[

"chunk0",
"chunk3"

],
"format":"png"

}
},
"accessors":{

"indexViews":{},
"attributeViews":{

"attributeView0":{
"bufferView":"attributeBufferView0",
"byteOffset":0,
"byteStride":16,
"componentType":5123,
"type":"VEC3",
"count":2399,
"decodeOffset":[

28003.4827119521,
-29173.7907980278,
31671.6816747218],

"decodeScale":[
535.4424912549,
271.0610593755,
293.4133239205]

},

"attributeView1":{
"bufferView":"attributeBufferView0",
"byteOffset":8,
"byteStride":16,
"componentType":5121,
"type":"VEC3",
"count":2399,
"decodeOffset":[-128, -128, -128],
"decodeScale":[128, 128, 128]

},
"attributeView2":{

"bufferView":"attributeBufferView0",
"byteOffset":12,
"byteStride":16,
"componentType":5123,
"type":"VEC2",
"count":2399,
"decodeOffset":[0, 0],
"decodeScale":[656535, 65535]

}
}

},
"meshes":{

"elephant":{
"attributes":{

"position":"attributeView0",
"normal":"attributeView1",
"texcoord":"attributeView2"

},
"indices":"",
"material":"",
"primitive":4,
"bboxCenter": [51.69, -108.82, 106.83],
"bboxSize": [121.18, 239.37, 221.14],
"meta":{

"progressionMethod":"POP",
"indexProgression":[],
"attributeProgression":[

138, 594, 2262, 8478, 32238, 115584,
337764, 594924, 684972, 691878, 691908

]
}

}
},
"textures":{

"elephanttex":{
"textureView":"elephantTexView",
"imageByteLengths":[

23448,
4767845

],
"width":512,
"height":512,
"internalFormat":6408,
"border":0,
"type":5121,
"format":6408,
"meta":{}

}
}

}

Fig. 4.18.: Example of a JSON-encoded SRC header of a scene containing the elephant model shown in Fig. 4.16.
Chunks of vertex attributes are transmitted interleaved with two texture images, allowing for progres-
sive streaming.

94

4.4. The Shape Resource Container (SRC) Format

original floating-point coordinates of a submesh. SRC therefore introduces two new attributes,decodeOffset and
decodeScale, which are specified for each attributeView object. For indices, these attributes do not make sense,
which is another reason to distinguish between attribute views and index views. With the values of decodeOffset
and decodeScale being denoted as vectors do and ds, and pq being a quantized position read from a transmitted
buffer, the decoding to floating-point position values p on the client side is then performed as follows:

p(pq) =
pq +do

ds
.

For 3D positions, this operation can be efficiently performed by incorporating the scaling and translation into the
model matrix, which is typically used apply the transformation of a mesh (positioning, rotation, scaling) during
rendering. In a similar fashion, the decodeOffset and decodeScale attributes can be used to efficiently decode
quantized normals and texture coordinates during rendering inside a vertex shader19. Note that the min and
max attributes are not available for attributeView objects inside SRC header (Fig. 4.18). Instead, SRC explicitly
specifies bounding box information with bboxCenter and bboxSize attributes, available for each mesh. This saves
additional storage costs for the accessors, and it seems well-justified since the extreme values of other attributes
such as normals, texture coordinates and colors are rarely used anyway (if used at all). In addition, as mentioned
earlier, the bounding box dimensions are not identical to the min/max values of the data when quantization is
being used, therefore having an explicit storage of the final bounding box is a much cleaner approach within this
context.

Chunk

1..*

TextureImage

Texture

1..*

1..*

0..1

Accessor

BufferView

Mesh

1..*

1..*

1..*

1

0..1

Fig. 4.19.: Basic SRC data structure. Struc-
tured information is delivered in a
header, binary chunks are subse-
quent sections of the file body.
(Image: [LTBF14])

Chunked Transmission. As can be seen in Fig. 4.17, progres-
sive transmission methods require that the final mesh data buffers
are transmitted in an interleaved fashion: after receiving some in-
dex data, vertex attribute data need to be received, followed by the
next refinement for indices, and so on. The X3DOM POPGeom-
etry, for example, solves this problem by maintaining a separate
HTTP request for each refinement. This, however, introduces a
tight coupling between the transmission layer and the rendering
layer, which means that the number of LOD refinements will al-
ways determine the number of requests. For the mentioned exam-
ple of the X3DOM POP Geometry format, where a single mesh
will be transmitted using up to 16 refinement levels for indices
and attributes, this means that a single mesh can lead to 32 HTTP
requests, which is a much too large number, introducing signifi-
cant overhead. In contrast, SRC minimizes the necessary amount
of HTTP requests by enabling the transmission of all LOD re-
finements within a single file. This requires that the base layer of
the mesh description hierarchy uses not buffers, but buffer chunks
(Fig. 4.19). Concretely speaking, SRC defines a buffer chunk to simply be a meaningful slice of a particular mesh
data buffer, or of binary texture data. In the trivial case, each mesh data buffer consists of a single chunk. Gen-
erally, however, SRC allows the encoding application to arrange the single slices of all mesh data buffers in a
random order, which makes it possible to interleave several buffers during transmission. A client application can,
for example, initially receive a first batch of index data along with the attributes of the referenced vertices, and

19In general, the original SRC paper’s equation is not the most efficient version to be used inside a shader, a better way would be to avoid
the explicit division by computing 1/ds beforehand and only using a multiplication instead in the actual shader code.

95

4. Compression and Encoding

render an intermediate representation as long as the rest of the buffers is being progressively downloaded in the
background. SRC therefore supports all streaming methods where mesh geometry and connectivity information
is transmitted in a progressive manner, like POP Buffers or Streaming Meshes, for example (Sec. 5.3, [IL05]).

Texture Data Views. The aim of SRC, being a self-contained format for shape data, was to include texture
data in the very same way it is already done for binary mesh data, by making it part of the binary file body.
Therefore, SRC does not only include a separate textures list, but also a list of textureView objects that access
texture data from the file body. This decouples the storage of texture data within the file body from its final form
in memory, which enables a progressive transmission of texture data, and interleaved transmission with mesh
attributes. Furthermore, SRC allows that texture data, transmitted using one or more buffer chunks, is encoded in
a format that can directly be uploaded to the client’s GPU, without any decode time. Such a format can either be a
raw storage format, or an array with compressed texture data, using, for example, S3TC for texture compression.
The resulting basic structures used to describe a textured mesh are illustrated in Fig. 4.19.

File Header and File Body. SRC always packages the structured header and the binary file body within a sin-
gle file. This approach is different from glTF 1.0, where the structured description always had to be transmitted
separately (or, conversely, buffer data had to be part of the structured JSON description, which is even worse for
large meshes). By always using just a single container file, SRC saves on HTTP requests, which is especially
relevant for larger scenes. Furthermore, a single container is much easier to handle for end users (for example,
when sending a 3D model to a friend or colleague, or when transferring it between different applications). The
SRC header is usually of negligible size, therefore SRC simply uses a standard ASCII JSON format. This has
the advantage that the client application can still easily use it, via a standard JavaScript call to JSON.parse().
Alternatives, such as Binary JSON (BSON)20 are possible. Therefore, SRC reserves the possibility to use dif-
ferent header encodings. This leads to the following layout of an SRC file’s preamble, consisting of three words
(each 32 bits): a magic number, identifying the SRC format, an identifier for the header format and for the SRC
version used for encoding, and, finally, the length of the header, given in bytes. Client implementations use the
information of this preamble to read and parse the structured header, which then contains information about the
binary chunks that make up the remainder of the file, the binary body.

Progressive Texture Transmission. Although SRC has not yet been tested with a truly progressive transmis-
sion format for image data, this could be achieved by using existing progressive image transmission methods,
such as the Adam7 encoding scheme of the PNG format. A simple way, however, to achieve a progressive rep-
resentation of compressed texture data is to exploit the fact that compressed textures are usually shipped along
with their precomputed MIP levels (instead of having to compute those on the client side). This means that a
texture may consist of different images, which are representing the MIP levels. SRC stores the length of each
image of a texture within the SRC header, using an attribute entitled imageByteLengths. The last number in this
list is always the size, in bytes, of the full-resolution texture image, while the others represent the sizes of the
respective MIP levels, starting with a MIP map size of 1× 1 pixels. This way, client applications are able to
progressively retrieve all MIP map levels, and use them to render intermediate stages during texture data retrieval
(Fig. 4.16)21.

20http://bsonspec.org/
21An efficient implementation of this progressive texture rendering method might be depending on MIP level clamps, a feature that is not

available with WebGL 1.0 (but with WebGL 2.0).

96

http://bsonspec.org/

4.4. The Shape Resource Container (SRC) Format

BufferViews

Chunks

Accessors

Textures / Meshes

Img_1 Img_2

Pos_1 Nor_1

Geo_1Tex_1

Geometry Data Texture Data Rendering Parameters

TextureImages

Fig. 4.20.: Structure of the body of an example SRC file,
containing the data shown in Fig. 4.16.
(Image: [LTBF14])

Combined Streaming of Geometry and Textures.
A great property of SRC is the fact that encoding ap-
plications can specify an exact, progressive order for
the download of a batch of mesh data buffers, belong-
ing to a mesh, by arranging the chunks in a corre-
sponding order inside the file body. Fig. 4.16 shows
some intermediate stages of streaming a scanned ele-
phant sculpture model. The structure of the corre-
sponding SRC file body is shown in Fig. 4.20. As
can be seen, texture data and geometry data (in this
case, non-indexed triangles) is transmitted in an inter-
leaved fashion. Low-resolution texture data is trans-
mitted first, and used throughout the first stages of ge-
ometry refinement. As soon as the geometry is avail-
able at a reasonable quality, the difference between
the low-resolution texture and the high-resolution variant becomes visible. At this point, additional texture data
is streamed, before a final geometry refinement takes place. Since the chunks are still plain binary containers, in-
tended for direct GPU upload (in WebGL, for instance, using the bufferSubData function), the performance
of the 3D Web application is not affected by introducing the concept of buffer chunks. It is worth noting that a
client implementation will be able to pre-allocate each buffer, as soon as it has received the SRC header, and that
a separate allocation of GPU memory for each incoming chunk is therefore not necessary.

4.4.2. X3D Integration and Data Compositing

The design of SRC allows Web applications to use it as a self-contained description and storage of mesh geometry
and texture data. This is a huge conceptual difference to X3DOM’s BinaryGeometry and POPGeometry nodes,
where all information needed for interpretation of the binary mesh data is encoded directly inside the X3D
document (Fig. 4.21), or as part of the binary data file extension (using extensions like ’.bin+8’ or ’.bin+4’).
Although X3D scene authors can decide to transfer geometry declarations to external X3D files, using the inline
mechanism, this does not solve the basic problem that low-level details of the mesh data layout, like, for example,
the data type of the vertex data buffers, have been included in the X3D declaration of the respective nodes. SRC,
in contrast, follows a similar approach as XML3D (using a special mesh tag): all information that needs to be
stored for a geometry node inside the scene graph is a reference to a self-contained SRC file, using the url field22.

As can be seen in Fig. 4.21, one new type of node which is used to refer to the SRC file has been entitled
ExternalGeometry. It replaces BinaryGeometry, filling the geometry slot of a Shape node. An important aspect
which deserves special attention in this context, is the possibility to use two fields of the surrounding Shape node,
bboxCenter and bboxSize, which are describing the axis-aligned local bounding box of the corresponding model.
The values could, for example, be computed by an authoring tool, which has been used to export the X3D scene.
According to the SRC proposal, the interpretation of those fields should be handled by the client, based on the
following rules [LTBF14]:

1. The bboxSize field should be considered to contain an unspecified size if at least one of the three dimensions
has a negative value (otherwise, the field is considered as specified). Following the X3D specification, the
recommended way to communicate an unspecified size is to use a value of -1 -1 -1 for the bboxSize field.

22In HTML, the typical naming would be to use a src attribute, but in X3D the typical naming, as used by the Inline node, is to call the
respective field url.

97

4. Compression and Encoding

X3DOM BinaryGeometry:
<Shape>
<Appearance>

<Material diffuseColor=’0.6 0.6 0.6’
shininess=’0.00234375’/>

<ImageTexture url=’"duck.png"’/>
</Appearance>
<BinaryGeometry DEF=’BG_0’ solid=’false’

vertexCount=’12636’
position=’13.44 86.94 -3.70’
size=’165.47 154.04 115.25’
primType=’"TRIANGLES"’
index=’binGeo/indexBin.bin’
coord=’binGeo/coordBin.bin+8’
normal=’binGeo/normalBin.bin+4’
texCoord=’binGeo/texCoordBin.bin+4’
coordType=’Int16’
normalType=’Int8’
texCoordType=’Uint16’/>

</Shape>

ExternalGeometry + SRC:
<Shape>
<Appearance>
<Material diffuseColor=’0.6 0.6 0.6’

shininess=’0.00234375’/>
<ImageTexture url=’"duck.src#tex_1"’/>

</Appearance>
<ExternalGeometry url=’duck.src’/>

</Shape>

Fig. 4.21.: Two X3D encodings of the Collada Duck example file, comparing X3DOM BinaryGeometry (left)
and the proposed ExternalGeometry node, using SRC (right).

2. If the bboxSize field is specified, the bboxSize and bboxCenter fields are used to determine whether the
mesh should be loaded. If the mesh has already been loaded, the bboxSize and bboxCenter fields can be
used for visibility determination (e.g., view frustum culling).

3. If the bboxSize field is unspecified, the bboxSize and bboxCenter fields are completely ignored during scene
loading and rendering, following the X3D specification. With SRC, the X3D browser gets an additional
possibility as a fallback, which is to performs a lookup for valid bounding box data in the header of the
corresponding SRC file.

The proposed design allows the client application to decide at which point an SRC file, representing 3D mesh
data within a specific area of the scene, should be loaded. This is makes it possible to reduce the number of HTTP
requests to a necessary minimum. The second rule also implies that the bboxSize and bboxCenter fields, if valid,
are used for culling, instead of using the internal bboxCenter and bboxSize fields of the SRC header. If a scene
author wants to use the bounding box data from the external file instead, the bboxSize field should be set to the
unspecified value -1 -1 -1 (third rule). While this redundancy of having the bounding box information potentially
in two different places is not necessary in the context of X3D applications, it keeps the SRC format self-contained,
allowing bounding box information in the SRC header to be used within other rendering frameworks.

Addressing SRC File Content. One of the main goals of SRC is to minimize the amount of HTTP requests by
providing a self-contained format for the geometry of a 3D mesh. To reduce the number of requests even further,
SRC allows to encode multiple meshes within a single file. External applications to should still be able to address
only a single mesh to be used for a specific shape, therefore SRC adds an addressing scheme for mesh data inside
the container file. A hash symbol is used to separate the SRC file’s URL from the identifier of the respective mesh
or texture. This allows several different ExternalGeometry nodes to refer to different meshes from a single file,
reducing, in the extreme case, the number of downloads needed for an entire scene to just a single HTTP request.
In addition, X3D ImageTexture elements can refer to a texture that belongs to a specific part of geometry, and one
can ensure that both are always loaded together. As the ImageTexture element accepts various image formats, a

98

4.4. The Shape Resource Container (SRC) Format

HEAD MESH_1 TEX_1 MESH_2

<ExternalGeometry url='foo.src#mesh_2'/>

<ExternalGeometry url='foo.src#mesh_1'/>

<ImageTexture url='foo.src#tex_1'/>

...

...

<X3D/>

<X3D>
...

...

File 'foo.src'

X3D Scene

<ExternalGeometry>
 <Source url='arma.src#mesh_1'/>
 <Source url='arma.src#mesh_2'/>
 <Source url='arma.src#mesh_3'/>
</ExternalGeometry>

...

<X3D>
...

<X3D/>

HEAD SUBMESH_1

File 'arma.src'

SUBMESH_2 SUBMESH_3

X3D Scene

Fig. 4.22.: Accessing different content within a SRC file, from various elements within an X3D scene. The
proposed nodes and addressing scheme allow for a decoupling of the number of HTTP requests and
the number of identifiable assets within the scene. (Image: [LTBF14])

combination of a geometry file in SRC format with external textures is still easily possible. An example is shown
in Fig. 4.22.

Data Compositing in X3D using the Source Node. A great advantage of data flow systems, like the XFlow
system for declarative 3D content, is that they are able to freely combine data elements from various sources,
allowing for efficient re-use of existing data chunks in different contexts [KRS∗13]. In the case of XFlow, a
mesh can be loaded from a file and re-used in several places. A custom attribute override can then be used to
alter individual properties (like vertex colors, for example) for each instance, keeping all of the other properties
from the original mesh. To allow such a dynamic behavior with SRC in the context of X3D scenes, there are
generally two possibilities. First, variants that exist within a single SRC container can simply be addressed by
using the corresponding mesh identifier when referring to the file. (example: my-container.src#mesh0). An SRC
file could, for example, contain a single set of vertex positions and normals, three different sets of vertex colors,
and three different meshes that realize the three variants. While this scheme allows to dynamically combine
mesh data within a single SRC, it does not allow to combine mesh data across different SRC files. The latter
is made possible by override single mesh properties in the external scene (for example, inside an X3D scene),
using a special declaration that assigns data from another source to a specific mesh property. To realize such a
mechanism within X3D, a special X3D node entitled Source has been proposed. The name is inspired by the
source tag, known from HTML5 video embedding. However, there are some major differences between the
Source node and this tag: While the tag lists alternatives for the corresponding video, the Source node is used to
provide different kinds of mesh attributes or indices, allowing for partial overrides or aggregation of mesh data.
In order to identify which attribut should be overridden by external data (if any), the Source node contains an
optional field entitled name. Like ExternalGeometry, the Source node uses the more X3D-conforming field name
url (instead of the more HTML-conformant name src) to specify the location of the data to be loaded.

A Source node must always be the child of an ExternalGeometry node, and an ExternalGeometry node may
have an arbitrary number of Source nodes as children. Fig. 4.23 shows an example, overriding a single position
attribute of a mesh. The name field contains the name of the specific attribute, as it was specified in the original
container file (duck.src in this example). Note that the example uses an extension of the mentioned addressing
scheme, using a dot and an attribute name, to refer not only to a particular mesh, but to a particular attribute of

99

4. Compression and Encoding

the mesh. With SRC it is, nevertheless, also possible to refer to an attribute that is encoded as a standalone file,
or to the first attribute within a file that has a matching name (using just a reference to an SRC without additional
qualifiers).

<Shape>
<Appearance>
<Material diffuseColor=’0.6 0.6 0.6’

shininess=’0.002’/>
<ImageTexture url=’"duck.src#tex_1"’/>

</Appearance>
<ExternalGeometry bboxCenter=’1 3 5’

bboxSize=’2 3 2
url=’duck.src’>

<Source
name=’position’
url=’duckAltPos.src#mesh_1.position’/>

</ExternalGeometry>
</Shape>

Fig. 4.23.: Overriding mesh properties, using the
proposed X3D Source node.

Furthermore, Source nodes can be nested. This way, scene
authors are enabled to recursively override several mesh at-
tributes. The ExternalGeometry node acts as a top-level
variant of the source node, with the difference that is has
no name field. Nevertheless, its url field can be used to in-
clude a set of mesh data that is then partially overridden by
child Source nodes. If multiple Source nodes are specified
as direct children of a ExternalGeometry node, but the url
of the ExternalGeometry is empty, the data from the Source
nodes is interpreted as separate parts, which are jointly rep-
resenting the corresponding mesh. This allows to split up
large geometries into multiple files, without actually having
to use multiple shapes inside the X3D scene. An example
is shown in the right-hand part of Fig. 4.22.

The following rules are used to determine which attributes
from an SRC file, specified via a Source node, using the (url) field, are used to override the original attribute data
(coming from a parent node that is either a an ExternalGeometry node, or another Source node):

1. If the name field is empty (default value), all mesh data from the file is used to override original index data
and attribute data with the same identifiers, if any.

2. If the name field is not empty, the following rules are applied to replace a particular attribute of the original
data, which has a name that matches the value specified in the name field:

a) If the url field contains a reference to a specific attribute of a specific mesh, this attribute is used
(regardless of its name) to replace the original attribute.
For example, using name=’position’ url=’my-container.src#mesh_1.colors’ will override the posi-
tions (as specified via name=’position’), regardless of the name colors being used for the respective
data chunk inside the SRC file. It is the freedom and responsibility of content creators to ensure that
SRC data and how it is being used inside a scene eventually leads to correct results, there is no notion
of semantics within the proposed compositing scheme.

b) If the url field contains a reference to a specific mesh (but not to a specific attribute), the first attribute
of this mesh with a name matching the original attribute’s name is used.

c) If the url field contains only a reference to a file (but not to a specific mesh or attribute within the
file), the first occurrence of an attribute with a name that matches the Source node’s name field is
used.

This way, it also becomes simple to override attribute data with new data from a single file, which is interesting
for several application scenarios. One possible scenario could be scientific visualization, where different colors
could be used to update the visual results of a simulation over time, for example.

Externalizing Shapes Nodes. Instead of just externalizing data from Geometry nodes, it can be beneficial to
externalize all data within a Shape node, including geometry and material. This is especially important for large

100

4.4. The Shape Resource Container (SRC) Format

Fig. 4.24.: Siena cathedral, rendered in a Web browser. In such cases, using texture compression is the most effi-
cient way to reduce GPU memory consumption, download time and decode time. (Image: [LTBF14])

scenes, in order to reduce the overall size of the Web application’s HTML page. Therefore, my coauthors and
me have proposed an additional X3D node, entitled ExternalShape [LTBF14]. As the name implies, this special
kind of Shape node, having no children, enables us to include a mesh, or all meshes from an SRC file, via its
url field. To represent appearance information inside an SRC file, mesh objects inside the SRC header can refer
to a material object via their ID, just like it is done in glTF. Such a material description can then, for instance,
include an X3D-compatible material description, as well as references to textures. With this powerful concept,
we can even use ExternalShape nodes in a similar fashion like Inline nodes, to include multiple geometries with
different materials, representing a single, large 3D object.

4.4.3. Results & Discussion
Within the past few sections, we have investigated a novel, streamable format for transmission of 3D mesh
data, entitled Shape Resource Container (SRC). It is built on latest technological developments, like the ability to
stream binary data within Web applications, and the use of compressed textures in the Browser (where supported).
SRC allows the authors of high-performance 3D Web applications to minimize the number of HTTP requests by
progressively transmitting an arbitrary number of mesh data chunks within a single SRC file. Furthermore, an
interleaved transmission of texture data and mesh geometry is possible, allowing for full control over the order
of progressive 3D asset transmission.

A novelty of the SRC format, compared to existing approaches in X3DOM, for instance, is the possibility to
use compressed textures. This does not only result in a significantly reduced GPU memory consumption, but
also has several advantages in a 3D Web context. Fig. 4.24 shows an example, visualizing the Siena cathedral
inside the browser. The whole scene uses 79 different textures, with a total size of 241 MB in PNG format.
Compressed to DXT1 format, the total size of all texture files shrinks to 78 MB, with just a minimal notable
difference. Furthermore, the startup time of the application can this way be significantly reduced.
We have noted that this approach is very similar to existing approaches for mesh geometry: by allowing a direct
GPU upload of downloaded data, the startup time of the application is significantly reduced (see [BJFS12b,
SSS14]).

101

4. Compression and Encoding

Fig. 4.25.: Comparison between the key features of SRC and the feature set of other formats. (Image: [LTBF14])

In order to use SRC within declarative 3D scenes, we have seen how SRC content can be integrated into X3D
scenes. The proposed ExternalGeometry node can be used to include a random number of 3D mesh geometries
into a single Shape node. Furthermore, content from a single SRC can be distributed to a random number of
Shape nodes. Using a set of dedicated Source nodes as children of an ExternalGeometry node, potentially in a
nested fashion, one can furthermore realize a wide range of mesh data composition schemes. For example, this
allows for dynamic updates of single attributes from external sources, and it furthermore enables scene authors
to maximize full or partial reuse of mesh data among several scene objects (shapes).

A first implementation of an ExternalGeometry and SRC exporter has been integrated into InstantReality’s AOPT
tool23, and a basic version of the loading and rendering code has been included in the X3DOM framework. Fur-
thermore, there is a project page, which will enable the interested reader to track progress of the SRC implemen-
tation, including both, exporter and renderer24.

A comparison of the SRC format and related formats is shown in Fig. 4.25. The most essential key contributions
of SRC over previous formats are the data compositing scheme as well as the decoupling of low-level, rendering-
related information from basic scene information, allowing for the efficient integration into X3D scenes, but also
into other kinds of 3D applications. Due to its clean design and due to the possibility to encode a complete,
textured 3D asset within a single file, SRC has served as inspiration for the binary version of glTF [CFN∗15].
Furthermore, an extension for supporting quantized attributes in glTF has been proposed, following the respective
concepts from the SRC format [LSTT15]. Although the addressing scheme used by SRC offers sophisticated
possibilities for data compositing, it has not been integrated into any other format yet.

23http://www.instantreality.org
24http://www.x3dom.org/src

102

http://www.instantreality.org
http://www.x3dom.org/src

4.4. The Shape Resource Container (SRC) Format

Future work could investigate more efficient header encodings, for example, using Binary JSON25, or Google’s
Protocol Buffers library26. Another important topic for future research could be the integration of parametric
geometry descriptions, which will allow for significant savings in bandwidth for several use cases [BFH05].

25http://bsonspec.org/
26https://code.google.com/p/protobuf/

103

http://bsonspec.org/
https://code.google.com/p/protobuf/

4. Compression and Encoding

4.5. A Compact Description for Physically-Based Materials

Within this section, a lightweight set of PBR-ready material parameters is proposed for integration with the glTF
1.0 and X3D standards. The proposals have served as a basis for the glTF 2.0 standard material model, and
they were first outlined within a paper by Sturm and coauthors (including myself) [SSTL16]. They have been
presented online first as extension proposal FRAUNHOFER_materials_PBR, which was then renamed to use
the official extension prefix EXT_materials_PBR, after Khronos group members signaled an early approval
for using this official prefix. However, before being ratified as an extension, the Khronos group moved forward to
glTF 2.0 and made the proposed Metallic-Roughness material model, with some additions, the default material
in the core standard, making an extension finally unnecessary. Within common PBR-compatible pipelines, the
two parameter sets Metallic-Roughness and Specular-Glossiness became commonplace (see [SSTL16]), and they
will be briefly summarized within the following sections.

4.5.1. Material Model: Metallic-Roughness

Fig. 4.26.: Metallic-Roughness. (Image: [SSTL16])

The Metallic-Roughness material model is very well-
aligned with the common parameters of popular PBR
implementations, and it can be used to represent a
wide range of real-world materials. It consists of three
different parameters: a metallic value, a roughness
value and a base color.

The metallic value is simply classifying the material
as metal (1.0) or non-metal (0.0), which implies how
the diffuse and specular parts of the BRDF will be

computed during rendering. While, in the real world, materials are either metallic or non-metallic (dielectric), it
is common to allow for a mix of both (example: Metallic value of 0.5). The roughness value is straightforward
to use with the microfacet-based specular BRDF (which has a roughness parameter used to compute the D and
G parts), simply describing how rough a surface is (1.0 means microfacets have random orientations, 0.0 means
all of them are oriented consistently). The base color is used to transport two different forms of data, depending
on the material type. For metallic materials, the base color is the measured reflectance value at normal incidence,
commonly labeled F0. For non-metallic materials, it stores the reflected diffuse color of the material. The F0
values for most non-metallic materials is (a grayscale color) near zero, therefore the Metallic-Roughness model
does not provide an F0 value for those materials, but just their base color. A common approximation is to use a
constant reflectance value of 4% (grayscale 0.04), which covers the most common non-metallic cases. Fig. 4.26
shows the three single components of the metal-roughness model and the rendered result.

4.5.2. Material Model: Specular-Glossiness

Fig. 4.27.: Specular-Glossiness. (Image: [SSTL16])

The Specular-Glossiness material model consists
of three parameters: Reflected Diffuse Color, Re-
flected Specular Color, and Glossiness of the sur-
face. While the glossiness parameter simply acts
as the inverse of the roughness parameter from the
Metallic-Roughness model (with glossiness = 1.0−
roughness), the other two parameters need a bit more
explanation. The diffuse color represents the reflected
diffuse color of a material, regardless of whether it is

104

4.5. A Compact Description for Physically-Based Materials

metallic or non-metallic (dielectric). For real-world metals, the diffuse color should be black, since there are
usually no visible subsurface scattering effects and diffuse reflections for this kind of materials. However, the
Specular-Glossiness model in principle allows this case. Similarly, the reflected specular color, which is the F0
value of a material, will usually be a small grayscale value for non-metallic materials and the perceived color for
metals, but the Specular-Glossiness model allows for arbitrary F0 color values. Fig. 4.26 shows the three single
components of the specular-glossiness model and the rendered result.

4.5.3. Comparison of Material Models

Fig. 4.28.: A fictional metallic material that cannot
be converted from Specular-Glossiness
to Metallic-Roughness without loss.

As can already be guessed from the fact that the Specular-
Glossiness uses only one scalar parameter and two colors,
while Metallic-Roughness uses two scalars and one color,
Specular-Glossiness allows for more expressive (yet also
non-realistic) materials. For example, it is possible to de-
fine a Specular-Glossiness material that is metallic and pro-
vides strong diffuse reflections, which is not the case for
real-world metals. An example is shown in Fig. 4.28.

An advantage of the Specular-Glossiness model is that it al-
lows for the exact specification of F0 values for non-metallic
materials, which is not the case for Metallic-Roughness (us-
ing an fixed approximation of 4% reflectance). It can there-
fore more faithfully represent real-world materials (but also
model materials that don’t exist in the real world). The
Metallic-Roughness model, while being slightly less ex-

pressive, has the advantage that it only needs five parameters (a three-component color and two scalars), while
Specular-Glossiness needs seven (two three component colors and one scalar). This is usually not an issue for
constant values used to describe an entire object (Fig. 4.28), but it becomes relevant in more common cases
where material properties are stored in textures and the amount of channels used should be kept small (Fig. 4.26,
Fig. 4.27).

4.5.4. glTF 1.0 Extension
The glTF 1.0 standard doesn’t specify a shading model for materials but relies instead on GLSL ES shader
code for WebGL and parameters (uniforms) in order to describe a particular appearance. The drawback of this
approach is that the shader code is highly dependent on the renderer (forward renderer versus deferred renderer)
and thus not compatible across rendering engines. Furthermore, GLSL ES shader code for WebGL cannot be
used with other rendering APIs, such as DirectX - this is a huge limitation too, since glTF assets would otherwise
be ready to be rendered in a similar fashion across different platforms. For the traditional, simple Blinn-Phong
and Phong material models, the KHR_materials_common extension provides a straightforward alternative
that works on all kinds of platforms, since the high level definition of material parameters is independent of a
particular implementation [Par15]. However, a PBR-ready material description is missing in glTF 1.0.

The proposed glTF 1.0 extension EXT_materials_pbr27 expands the glTF 1.0 material schema by adding a
new identifier for the materialModel property and by specifying the material model’s properties within a small
object entitled values.

For the Metallic-Roughness model, a simple example looks like this:

27https://github.com/tsturm/glTF/tree/master/extensions/Vendor/FRAUNHOFER_materials_pbr

105

https://github.com/tsturm/glTF/tree/master/extensions/Vendor/FRAUNHOFER_materials_pbr

4. Compression and Encoding

"materials": {
"golden_plastic": {

"extensions": {
"EXT_materials_pbr" : {

"materialModel" : "PBR_metal_roughness",
"values": {

"baseColorFactor": [0.5, 0.5, 0.5, 1],
"metallicFactor": 0.0,
"roughnessFactor": 0.2

}
}

}
}

}

The same example using Specular-Glossiness model is defined as follows:

"materials": {
"golden_plastic": {

"extensions": {
"EXT_materials_pbr" : {

"materialModel" : "PBR_specular_glossiness",
"values": {

"diffuseFactor": [0.5, 0.5, 0.5, 1],
"specularFactor": [0.0, 0.0, 0.0],
"glossinessFactor": 0.8

}
}

}
}

}

As can be seen from the example, a fourth component is added to the base color / diffuse color parameters, to
allow for transparent parts (using RGBA colors).

Values for all parameters can be specified as constant values (scalars, or vectors in the case of colors), but they
can also be specified using texture images. In that case, texture content must be transformed to linear space if
necessary (for the case of sRGB data) before performing any computations. The constant values (explicitly given,
or implictly given as defaults) are then applied as factors to the RGB(A) color values fetched from the texture.
For example, let us assume that we are using Specular-Glossiness that a linear-space value of (0.9,0.5,0.3) is
obtained from the diffuse texture, and that the diffuse factor would be given as (0.2,1.0,0.7,1.0). Then, the
resulting diffuse color to be used would be (0.9 ·0.2,0.5 ·1.0,0.3 ·0.7,1.0 ·1.0) = (0.18,0.5,0.21,1.0).

4.5.5. X3D Node
To enable X3D to support PBR-ready materials, we can define a new node for Metallic-Roughness, which will be
entitled PhysicalMaterial. The new node acts as alternative to the standard (Blinn-Phong) Material node of X3D,
being used as a child of the Shape node. Similar to the material properties introduced for the glTF extension,
the attributes of the PhysicalMaterial node are albedoFactor, roughnessFactor and metallicFactor. Alternatively

106

4.5. A Compact Description for Physically-Based Materials

to specifying the factors, or in combination with them, texture maps with corresponding names (albedoMap,
roughnessMap and metallicMap) may be used. Similar to textures inside the CommonSurfaceShader node,
textures can be provided using ImageTexture nodes as children of the PhysicalMaterial node.

A simple example with an albedo texture and constant values for metallic and roughness parameters looks like
the following:

<PhysicalMaterial roughnessFactor="0.5" metallicFactor="1.0">
<ImageTexture url="albedo.png" containerField="albedoMap"/>

</PhysicalMaterial>

In addition, it is possible to design a similar, simple PhysicalMaterialSpecGloss node for Specular-Glossiness
materials.

4.5.6. Results & Discussion

Fig. 4.29.: Comparing X3DOM’s implemen-
tation of the X3D standard mate-
rial (Top) to the proposed PBR-
ready Metallic-Roughness mate-
rial with IBL (Bottom).
(Image: [SSTL16])

Practical experiments have shown that, visually, using PBR
significantly improves the quality of the rendered results,
compared to using existing legacy material models (such as
KHR_materials_common in glTF 1.0 or the default Mate-
rial node in X3D). An example is shown in Fig. 4.29, where the
proposed PBR-ready Metallic-Roughness material is compared
to non-PBR pipeline, using the default X3D definitions for mate-
rial and shading.

For glTF 1.0, the proposed extension enables the transport of a
wide range of materials without the need for custom shaders.
For the case of simplicity, the glTF community has favored
the Metallic-Roughness model to become the only available
material model within the core glTF 2.0 standard. However,
Specular-Glossiness can be additionally supported through an ex-
tension. In case the client does not provide support for Specular-
Glossiness, an alternative Metallic-Roughness variant (if speci-
fied by the user) can be used as a fallback. For example, this
can be the case because a client implementation does not provide
enough texture channels to support Specular-Glossiness.

It is worth noting that, inside the X3D world, the usage of
constant factors along with values fetched from textures has
already been proposed for the X3D CommonSurfaceShader

node [SJV∗12]. With a declarative interface, as provided by the glTF JSON schema or by the XML or VRML
schemas of X3D, all attributes are given at any time anyway, be it as explicit values specified by a user or as
implicit defaults. Therefore, making use of them as factors does not come at any changes in the interface. The
alternative would be to prioritize textures over constant values, requiring an implementation to ignore a constant
values as soon as a texture has been specified - if this approach would be easier to understand or cleaner (from a
conceptual point of view) is subject to personal taste.

In the paper of Sturm and coauthors, further extensions for the specification of IBL-related data (lookup tables
and preprocessed lighting environments) are proposed [SSTL16]. We have not discussed these proposals as
part of this thesis, since they are not related to the actual 3D asset data (consisting of geometry and surface

107

4. Compression and Encoding

material), but rather to the lighting environment, which can be seen as part of the concrete client application,
rather than being part of an asset. For example, when digitizing objects using a 3D scanner, a controlled lighting
environment will be used, and usually no environment map is captured for lighting. Instead, the 3D asset is
optimized and transmitted to a 3D Web application, which will typically provide appropriate lighting for a given
context (including an environment). For a discussion of IBL-related extensions, the interested reader is therefore
referred to the paper of Sturm and coauthors [SSTL16].

A possible next step to enhance realism would be to allow for layered materials. This would allow to model
surfaces with multiple layers that interact with the incoming and outgoing light, such as car paints. So far, for
the scanned assets investigated as part of this thesis, such surfaces have not been relevant, but supporting them
will most likely become a requirement within the near future. However, the big challenges in this context will
probably rather appear during the acquisition and steps (3D scanning / reconstruction of material properties) than
during 3D optimization or rendering.

108

4.6. Summary

4.6. Summary

Within this chapter, several aspects of efficient encoding of 3D mesh data for online presentation have been
discussed. Two case studies were presented. The first case study compared 3D mesh data and 2D image series
for 360◦ viewing, showing that using 3D mesh data is in fact a feasible solution, in terms of possible quality
and compactness, for the embedding of 3D experiences into Web pages. The second case study showed that an
efficient real-world 3D format for the Web must not only provide good compression rates, but also fast decoding,
emphasizing the importance of this aspect especially in the context of Web-based 3D graphics on mobile client
devices. These findings led to development of the Shape Resource Container (SRC) format for 3D mesh data.
SRC is a self-contained, flexible and optimized format that allows for fast decoding, basic geometry compression
through quantization, texture compression and progressive streaming. It furthermore decouples of the packaging
of single mesh data elements from the number of HTTP requests that is necessary to load them, and it introduces
a powerful scheme for addressing of mesh data and mesh data compositing, illustrated by example in the context
of X3D scenes. Finally, a compact and expressive parameter set for realistic, physically-based shading has been
presented, along with a proposed integration into the X3D and glTF standards. Like SRC, this material model
has already been in parts adopted for standardization within glTF 2.0, which shows the high practical relevance
of the presented proposals for real-world 3D Web applications.

109

4. Compression and Encoding

110

5 Progressive Delivery

A compact encoding of mesh attributes and a fast decoding help to significantly enhance the user experience for
3D Web applications. Still, for mesh data sets of common size, consisting of many thousand triangles, today’s
bandwidths do not allow an instant viewing, but instead often require the user to wait for a few seconds until
the data set has been retrieved over the network and can be interactively inspected. To improve this part of the
browsing experience, many applications use animations or progress bars, informing the user about the current
state of the download. An alternative, which is often much more pleasing to the user, is to progressively transmit
the mesh data, leading to a first usable result after some milliseconds, which is then successively improved during
the rest of the loading time. Such a user experience is already very common for other types of media on Web
pages, and inconsistent or partial presentations are usually accepted during loading, as long as a continuous
refinement is taking place. For example, for a short period of time, images may be missing, or the page layout
may not yet be final. In general, the overall aim of progressive loading of a Web page is to deliver an interactive
user experience by avoiding to stall any user interaction.

Providing a well-working solution for progressive loading within today’s real-world 3D Web applications still
remains a challenging problem. This might seem surprising, as there has been much work dedicated to the
development of Progressive Mesh (PM) compression methods within the past decade, and beyond [PKJK05].
The primary reason for this is that the rendering APIs and, especially, the decode layer and available CPU power
have changed dramatically within the past twenty years: Instead of the immediate mode OpenGL of the 1990s,
where geometry data was usually kept in main memory and therefore easy to modify in an efficient manner
between subsequent draw calls, today’s retained mode WebGL API requires the program to upload data to the
GPU before rendering, which should not be done too frequently in order not to sacrifice too much rendering
performance. Fine-grained updates of geometry data are therefore rather inefficient in a common Web-based 3D
rendering context. More importantly, the mentioned decode layer nowadays is not a native C++ application, but
a JavaScript engine inside a browser and, being the most crucial point, mobile devices are providing limited CPU
power for decoding of 3D data streams inside the browser, or they may need their precious CPU power to be
allocated for other tasks running in parallel. Therefore, classical methods for progressive mesh encoding do not
translate well to today’s 3D Web environment, but they may need special adaption [LCD13, LCD14].

The POP Buffer method, which will be discussed at the end of this chapter (Sec. 5.3), offers a lightweight
progressive streaming that is well-aligned with today’s 3D Web technology. It is based on a previous approach
entitled Progressive Binary Geometry (PBG), which will be outlined before (Sec. 5.2). The following section
summarizes some of the most relevant background knowledge and related work, which is necessary to understand
the PBG and POP methods, along with their advantages and disadvantages.

111

5. Progressive Delivery

5.1. Goals & State of the Art

Quantization and Adaptive Precision. To compress mesh geometry for both, transmission and storage, many
approaches employ quantization of vertex positions, as proposed in the pioneering work of Deering [Dee95].
While more sophisticated methods like quantization of spectral coefficients are clearly of superior quality [BCG05],
uniform quantization in cartesian space is still the most popular approach in practice [JPP08] – likely because it
is fast and simple. In the following, we will use the term quantization as a synonym for this quantization method.
Chow observed that integer quantization is similar to snapping vertex positions to a regular grid [Cho97]. He
computes the error based on the granularity of a region. However, quantization is simply considered a static
pre-processing step, progressive adaption of precision is not discussed. Hao and Varshney have shown how
the dynamic use of quantized coordinates can speed up 3D transformations [HV01]. Pool et al. experimentally
confirmed these findings and provided a study on depth errors [PLS08]. Still, both approaches are ignoring
the fact that many triangles might become degenerate after quantization. They therefore just complement LOD
techniques by dynamically reducing the precision of vertex properties, while the POP buffer method inherently
combines both approaches (as will be discussed within Sec. 5.3). Purnomo et al. use quantized vertex attributes
for a compact, densely packed storage of mesh data in GPU memory [PBCK05]. Decompression is performed
inside a vertex shader during rendering. Still, they focus on the off-line creation of a static, simplified and quan-
tized mesh representation, leaving dynamic aspects like LOD management and progressive representation aside.
In addition to storing quantized vertex data in GPU memory, Meyer et al. also adapt the precision dynamically
during runtime in order to reduce memory load [MSGS11]. However, it requires costly dynamic updates of
single bits for each vertex during runtime. In contrast, the POP method employs a stateless buffer, which is
simultaneously used by all LOD representations, and by all instances of a model.

Progressive Mesh Compression. Methods associated with the term Progressive Meshes (PMs), as originally
proposed by Hoppe [Hop96], encode mesh data in a compact and progressive structure based on sequential edge
collapse and vertex split operators. As the CPU-based processing time of such approaches can become critical
during runtime, game developers have early tried to port parts of the technique to the GPU [Sva99]. The focus
of latter work is primarily shifted towards the optimization of RD performance (see the survey of Peng et al.
[PKJK05]), aiming at compact representations for transmission and mostly leaving the aspects of decode time
and LOD rendering completely aside [PKJK05, ALAK11, LLD12]. Hu et al. [HSH09] presented a GPU-based
rendering algorithms for PMs, which partially parallelizes the original method of Hoppe by using geometry
shaders. Unfortunately, such advanced GPU programming features are not available in most mobile and Web-
based graphics APIs, such as OpenGL ES and WebGL. In addition, a problem inherent to the basic design of
all PM algorithms is the need to store and manage the connectivity information for each instance of a mesh
separately. In contrast, we will see that the stateless POP buffer does not need to be modified at all, once it has
been uploaded to GPU memory.

Discrete LOD and Vertex Clustering. As an alternative to PMs, discrete LOD methods completely avoid
changes of the mesh data on the GPU. Several pre-computed versions of a mesh are used to represent dif-
ferent levels of detail. This also enables the use of multiple instances without additional memory consump-
tion [LWC∗02, Wil11a]. The method of Sander el al. [SM05] allows for smooth transitions between LOD rep-
resentations without popping artifacts. Still, it does not provide a truly progressive data structure, since the
representations are still completely disjoint in memory. In contrast, the POP buffer represents several LOD
representations in a nested manner, which enables progressive transmission and avoids additional memory over-
head. While a wide variety of mesh simplification methods has been proposed in the past (see Sec. 2.1), most of

112

5.1. Goals & State of the Art

these algorithms, such as simplification via edge collapses, are not really related to the POP and PBG methods
discussed within this chapter. Instead, the POP and PBG algorithms are using a form of clustering-based simplifi-
cation. The original Vertex Clustering approach, proposed by Rossignac and Borrel, groups vertices into uniform
grid cells by checking their truncated coordinates [RB92]. Vertices within the same cell are then collapsed to a
single representative vertex, which could consider importance weights. After this first step, polygons that are de-
generate get filtered out, resulting in a static, simplified mesh representation. Extensions to the original algorithm
have been proposed by several authors, improving the quality of the results, enabling dynamic, view-dependent
clustering or out-of-core processing, without and with help of modern GPU features [LT97,LE97,Lin00,DT07].
Schmalstieg and Schaufler achieve progressive refinements by simply updating vertex indices within the indexed
triangle list whenever the LOD changes [SS97]. However, this introduces additional processing load. Further-
more, sharing the same triangle buffer for rendering multiple instances with different LOD (as it is possible with
the POP method) becomes impractical. Willmott improves the result of the clustering process through several
criteria that lead to better preservation of shape, thin features and attribute discontinuities, while still performing
the simplification at interactive rates [Wil11a]. However, his method does not enable progressive transmission,
since it still creates several, disjoint LOD representations.

Sequential Image Geometry (SIG). Behr and coauthors have proposed Sequential Image Geometry (SIG), a
scheme to efficiently encode arbitrary mesh data in images, for usage within 3D Web applications [BJFS12a].
The SIG method has been designed before the JavaScript TypedArray specification (which enables the handling
of binary data directly inside a Web application). Driven by the browser capabilities that were available at the
time of its design, SIG is a smart approach that uses browser’s existing capabilities to efficiently download and
decode images, as well as uploading them to GPU memory, without any explicit data processing inside the
application (JavaScript) layer. This makes it possible to use SIG to efficiently externalize even very large 3D
scenes with many millions of triangles into images, which allows for an enhanced user experience, compared to
storing the 3D mesh data directly as part of the Web page’s text. In addition, SIG allows for progressive loading
on two different levels: First, large meshes will be subdivided into several chunks of 3D geometry, which then
subsequently pop in as the respective images have been loaded in the background. Second, the 3D geometry
of each chunk is transmitted in two steps (each providing 8 bits of information for each 3D coordinate), which
leads to a visible progressive refinement of 3D chunks that have already been partially loaded. Previous methods,
such as Geometry Images, have encoded 3D mesh data in images by regularly sampling the parameterized 3D
geometry [GGH02, SWG∗03]. This involves a parameterization process, mapping the 3D surface to a square or
rectangle, which introduces additional complexity and, especially, a potentially large amount of stretch. There
are methods which may reduce this stretch, or adapt the scale of the 2D regions to the local fidelity of the 3D
geometry (or of other 3D surface attributes) [SSGH01, SGSH02]. However, the coupling between the image
resolution and the resolution of the resulting mesh, as well as related problems arising from the grid-based
sampling of the 3D surface, make these image-based methods less adaptive than other compression algorithms
that operate directly on the 3D mesh. In contrast to Geometry Images, SIG does not require a parameterization
of the 3D surface, but simply encodes the existing 3D mesh data in images.

SIG Geometry Encoding. SIG uses RGBA images to store vertex data (e.g., coordinates and normals) in a
simple sequential order, which is the reason for its name, Sequential Image Geometry. Concretely speaking, this
means that the content of the buffers describing the mesh, like vertex positions, is mapped to subsequent pixels
in the image, for example from upper left to lower right. The original, continuous floating-point coordinates are
first mapped to discrete integer values of 8 or 16 bit and then encoded into one or more images. This is done by
mapping each vertex attribute to a normalized space within its bounding box, which is just the straightforward

113

5. Progressive Delivery

Fig. 5.1.: Using an index texture to access the first two bytes of a vertex attribute. (Image: [LJB∗13])

quantization used by the vast majority of 3D compression methods [Dee95,Cho97]. One coordinate, such as the
spatial x coordinate, is always mapped to one 8 bit image channel, such as the r channel of an RGBA image. For
vertex attributes that require more than 8 bits of precision, the quantized attribute values are split up into multiple
chunks of 8 bits. For example, a 16 bit coordinate will be split up into its first 8 bits and the remaining 8 bits.
Those 8 bit chunks are then stored in the respective images. A typical implementation, relying on RGBA images,
may therefore use two images to encode 3D positions (16 bits per component), one image to encode 3D normals
(8 bits per component), and one image to encode RGB colors (8 bits per component). A single RGBA image
may be used to encode 2D texture coordinates with 16 bits of precision, since the u and v coordinates may be
split up into the rg and ba components of the image. While in principle using quantized version of 3D positions,
normals and texture coordinates decreases the precision of the rendered 3D data, the aforementioned encoding
using 16 bits per coordinate at maximum is usually good enough in practice to prevent a visible impact on visual
quality.

SIG Topology Encoding. For non-indexed mesh data, the mentioned geometry encoding scheme is already
sufficient in order to render the mesh with all of its attributes. In this case, a WebGL-based client application will
generate a list of triangle vertices, where each vertex corresponds to one pixel location within the image data.
Within the vertex shader, the 3D positions and other vertex attributes will be read from the images (textures) and
applied to the vertex data. The fragment shader is the same that it would be without using SIG. For indexed mesh
data, an additional image is necessary to store the vertex indices for each triangle. Using this image, the vertex
shader can look up the index of the vertex data, generate texture coordinates from it and access the images at the
respective locations in order to fetch the vertex data (a dependent texture read, see Fig. 5.1).

SIG Compression by Coordinate Reordering. SIGs enjoy implicit compression from the image formats sup-
ported by browsers. Compared to uncompressed storage, this will naturally the size of a transmitted SIG con-
tainer. Since lossy compression types, such as JPEG, will distort geometry quite radically, compressing SIGs
has to resort to classical non-lossy encoding such as RLE or LZW [BJFS12a]. In contrast to geometry images,
the 2D data layout used by SIG is not strongly coherent in 3D. Therefore, compression algorithms which exploit
local coherence cannot work as well as they do for other kinds of image content (such texture maps or common

114

5.1. Goals & State of the Art

Fig. 5.2.: Original and lexicographically sorted coordinate image (picture detail). The full unsorted PNG image
has a size of 91.4 KB, the sorted one gets compressed down to 44.7 KB. (Image: [LJB∗13])

photographs). As my coauthors and me have shown in the respective paper, one can significantly improve the
compression ratio for the vertex attributes’ PNG images if a reordering scheme is applied, assuming that indexed
mesh data is used [LJB∗13]. There are several sorting schemes which can be applied in this case, one straight-
forward way is to sort the vertex data lexicographically by each vertex’ xyz position. This potentially leads to
smaller deltas between neighbored pixels, thereby improving the compression ratio (Fig. 5.2). Another possibil-
ity is to use a spatial indexing method like morton codes. Such methods try to guarantee that neighboring vertices
in the buffer are also close to each other in 3D space. Depending on the mesh, using this method for rearranging
the vertex data might result in better image compression results than the lexicographical ordering. For the happy
buddha model used in the paper ([LJB∗13]), using unsorted PNG images led to 20% compression, compared
to storing the whole image content (including vertex positions, normals and indices) as raw binary data. Lexi-
cographical ordering of the vertex data (using the coordinates as sort keys) led to 29% compression, and spatial
indexing using morton codes even led to 35% compression. While other attribute images than the coordinate
image, such as the normal image, might also benefit from this process in terms of compression, the index image
will usually not benefit - all degrees of freedom that remain for this case are a rearrangement of whole triangles,
appearing as blocks of three pixels, as well as rotating the order of vertices within each triangle. Using cache-
optimized index arrays may also lead to smaller index images, but cache optimization strategies typically also
impose a specific ordering on the vertex data. As can be seen, although image compression through a reordering
of image pixels can lead to more compact SIG containers, this requires to rearrange the actual 3D mesh data,
which is a rather intrusive way of encoding it.

115

5. Progressive Delivery

5.2. Progressive Binary Geometry (PBG)

In the domain of real-world 3D Web applications, Sequential Image Geometry (SIG) containers have been the
first approach towards externalizing heavy 3D mesh data from HTML documents, in order to achieve an improved
user experience and progressive loading, without performing any explicit decoding steps inside the JavaScript
layer of the Web application. With the advent of the TypedArray specification, WebGL applications were enabled
to directly and efficiently handle binary buffers in JavaScript. This enabled the development of a more fine-
grained progressive transmission method, entitled Progressive Binary Geometry (PBG), which is based on the
bitwise refinement of vertex data that is already known from SIG. The proposed formats are compared in terms
of compactness and decode time, and we highlight the potentials and limitations of both approaches.

The Typed Array specification introduces a generic buffer type, the ArrayBuffer, and typed array view types
(example: Float32Array) that represent a certain view onto an ArrayBuffer, allowing straightforward, indexed
read-/write-access. For binary downloads, a JavaScript XMLHttpRequest (XHR) object can be used, which
directly supports ArrayBuffer objects as response type. With these features at hand, using binary mesh containers
inside a WebGL application is pretty straightforward. In the first step, an XHR object is created and its return
type is set to arraybuffer before the download is started. As soon as the data has been downloaded, the buffer
can then directly be transferred to the GPU. This is a pretty fast and simple method, since it does not include any
explicit decoding step within the JavaScript layer. In the context of the X3DOM framework for 3D on the Web,
Behr and coauthors entitled this approach as Binary Geometry, using a raw, ready-to-render binary format for
mesh data [BJFS12a, RPC13].

Compared to the image-based SIG method, the direct Binary Geometry approach is more flexible, less intrusive,
and much easier to implement. Nevertheless, it does not provide any data compression (besides a possible
quantization to 8 or 16 bit), and it is not progressive at all. Although it is generally possible to implement
advanced progressive mesh compression methods, with decoding performed inside the JavaScript layer, this
would take away much of the advantages of a straightforward and efficient implementation, especially on mobile
devices with limited CPU power [LWS∗13]. However, we can instead introduce a simple progressive refinement
of the retrieved data at the cost of only a small computational overhead. We call the corresponding progressive
binary mesh data format Progressive Binary Geometry (PBG).

5.2.1. Encoding

Fig. 5.3.: PBG encoding, splitting attribute
data into several levels.
(Image: [LJB∗13])

The basic idea of the PBG method is to provide a piecewise trans-
mission of the mesh’s vertex data, similar in spirit to SIG. How-
ever, since we are not limited to using 8 bit RGBA data packages,
we can perform this piecewise transmission in a much more fine-
grained manner with raw binary containers. Throughout the fol-
lowing experiments, we will use 2-bit refinement chunks of coor-
dinate data and 1-bit chunks of normal data respectively, with the
normals encoded in spherical coordinates θ,φ.

The refinement data for each vertex at each level is encoded using
a single byte (Fig. 5.3), leading to 8 levels in total to encode 16
bits of xyz coordinate data and 8 bits of θφ normal data. After
the full-precision normal and position data has been sent, other
attributes like texture coordinates and colors are transmitted as
separate refinement levels.

116

5.2. Progressive Binary Geometry (PBG)

Fig. 5.4.: Streaming levels of detail, using PBG. For each level, precision of the vertex positions is indicated.
Normals in spherical coordinates use half of this precision. (Image: [LJB∗13])

5.2.2. Decoding

The decoding of PBG containers can entirely be implemented within the JavaScript layer of the client application.
All vertex data buffers are first initialized with zero values. For each downloaded refinement level, the new bytes
then need to be applied to those vertex data buffers in order to refine the current intermediate result.

As can be seen in Fig. 5.3, the refinement of the existing vertex data can simply be realized by inserting the bits
of the received refinement data into the matching position in the intermediate result buffer. To perform this step,
we first extract the desired component of the refinement data (for instance, the new bits for the x coordinate of
a vertex) using a bitmask. The result is then shifted to the right, if necessary, so that it contains the refinement
data in the least significant bits. After this, we need to left-shift the result to match the bits which were originally
encoded with the given refinement level (of course, this step can be combined with the previous one into a single
shift operation if desired). Finally, the insertion into the intermediate result buffer is done by a binary OR. The
following listing summarizes this simple process:

for (i = 0; i < numVertices; ++i) {
dataChunk = dataBuffer[i];
for (c = 0; c < numComponents; ++c) {

component = dataChunk & componentMask[c];
component >>>= componentShift[c];
component <<= precisionOffset;
resultBuffer[baseIdx + c] |= component;

}
baseIdx += stride;

}

In contrast to SIGs, no special decoding step inside the vertex shader is required, therefore standard rendering
code, including user-defined shaders, can be used out of the box. Results for a progressive streaming of the
Stanford bunny model are shown in Fig. 5.4.

While this is definitely a very simple progressive decoding method, it is still expected to need some time to
decode the incoming data and to upload the refined data to the GPU, especially for large models with millions of
triangles. Performing the whole decoding process inside the application’s main context would potentially freeze
the user’s interaction with the scene. A good approach is therefore to outsource the refinement job into a separate
thread, which is possible using JavaScript WebWorkers: each time a refinement level has been downloaded,
the corresponding ArrayBuffer object is transferred to the worker’s context. If the browser supports the W3C’s
HTML5 recommendation on Transferable objects, buffers can be efficiently passed to the worker per reference,
instead of copying the data. After the worker thread received the input data, PBG decoding is performed and
the refined vertex data buffer is transferred back to the main context of the Web application. This way, we can
provide a continuous progressive refinement of the scene, but at the same time guarantee smooth and convenient
user interaction with the intermediate result, which is iteratively refined in the background.

117

5. Progressive Delivery

5.2.3. Subdivision into Submeshes
In contrast to SIG, the PBG encoding has to deal with a hard API limit: WebGL 1.0, without any extensions,
only supports 16 bit indices. Hence, indexed rendering only allows addressing a maximum of 65.535 vertices
per draw call anyway, therefore it is necessary to subdivide the mesh as soon as the vertex count of the model
exceeds that limit, obtaining several Submeshes and encoding them separately. Since those submeshes do not
really have to represent closed surface patches, simple methods can be used to subdivide the triangle data.

Fig. 5.5.: Partitioning for 16-bit indexed rendering with
WebGL. Left: Kd-tree-based approach, 32
submeshes. Right: Vertex cache optimization
approach, 14 submeshes. (Image: [JLH∗13])

Two possible approaches are spatial subdivision, for
example using k-D trees, or a simple region grow-
ing based on vertex cache optimization (Fig. 5.5, see
[JLH∗13]). If the full model is visible, vertex cache
optimization delivers the fastest rendering, not only
because of the cache optimization itself, but because
the region growing approach leads to an optimally
low number of submeshes, and hence also to an op-
timally low number of draw calls. The k-D tree-
based method, in contrast, produces a spatially sub-
divided model with tighter bounding boxes for each
submesh, at the cost of an increased number of sub-
meshes and decreased vertex cache locality. Since
the normalized coordinates are stored with respect to
each submesh’s bounding box, we will consider this
method for the following experiments, as tight bound-
ing boxes lead to improved precision of the quantized
coordinates [LCL10]. The several intermediate load-

ing results depicted in Fig. 5.6 reveal the submesh structure used for the Stanford happy buddha model.

5.2.4. Results & Discussion
To evaluate the performance of PBG, compared to SIG, we will have a look at experimental results, comparing
compactness and decode time of both formats.

Mesh Data Compression While SIG containers are naturally compressed through the use of common image
formats supported by browsers, the proposed PBG method instead stores mesh data in a dedicated binary format,
which seems to bear potential for additional mesh compression. A powerful feature that we can exploit in this
context is GZIP compression, which is supported by all common browsers and available as a special encoding
type, which can be specified via HTTP. This feature is especially promising since we do not have to perform
any additional operations inside the JavaScript layer, but we can instead rely on the fast, built-in decompression
implementation of the Web browser. For an additional reduction of the file size, we will store the index data with
a variable-length delta coding. Index values are delta-coded with a zigzag scheme, and the resulting unsigned
integer coordinates are stored with variable length, similar in spirit to the WebGL-loader approach [Chu12b].
This especially helps us to decrease the time needed until a first result can be rendered, as we will always need
the full index data to render a PBG container. While GZIP compression helps to reduce the file size for chunks
of binary mesh data, it should not be applied on top of image compression. For example, it is using pretty similar
mechanisms like the PNG format does, and hence the file size will not decrease any more if GZIP compression
is applied to SIG containers that use PNG. A comparison of the file size for different file formats and models
is shown in Tab. 5.1. For comparison, text-based X3D encoding and a X3D binary encoding (X3DB), using

118

5.2. Progressive Binary Geometry (PBG)

∆ X3D X3DB PBG SIG PBG + GZIP
bunny 69,451 2,216 (32.67) 916 (13.5) 419 (6.18) 396 (5.84) 370 (5.45)
horse 96,966 3,332 (35.19) 1,274 (13.45) 588 (6.21) 593 (6.27) 519 (5.48)
buddha 1,087,716 48,370 (45.54) 14,872 (14.00) 6,722 (6.33) 6,301 (5.93) 5,865 (5.52)

Tab. 5.1.: File size, in KB, for different models and file formats, all storing 3D positions and normals per vertex.
The number of bytes per triangle given in brackets.

FastInfoSet for binary XML encoding and full-precision binary encoding of vertex attributes along with zlib
compression, have been included. As can be seen, the SIG and PBG methods outperform the classical X3D
encodings, since they are using quantized instead of full-precision attribute buffers. Results for the SIG method
are given for directly encoded input meshes, without re-arranging the vertex data. On average, due to the PNG
image compression, the SIG method achieves 19% smaller files than the raw PBG method. However, after
applying additional GZIP compression, the results for the compressed PBG files are slightly better.

Progressive Decoding Compared to SIG, PBG containers provide a very fine-grained progressive transmission.
Especially for setups with a limited bandwidth, this feature is very helpful as it allows early insights to the data,
with a continuous improvement of quality (see Fig. 5.4). Also, in contrast to advanced methods using progressive
meshes (see [Hop96, PKJK05]), the order in which the refinements are performed, and therefore also the order
in which files are received, is not crucial. This is rather important in a Web-based context, as one cannot rely
on downloads to finish in a certain order. We will now also compare SIG and PBG in terms of loading time.
In contrast to SIG, PBG containers need to be decoded inside the JavaScript layer. This can become a potential
bottleneck when downloaded data is available before the worker thread has finished the decoding of the previous
refinement level. Fig. 5.6 shows a comparison of the SIG and PBG methods, using a bandwidth of 2 MBit / s.
The experiment was run on a Desktop PC with an i7 CPU (4 cores), running at 3.40 GHz, and 32 GB of RAM.
As can be seen, both methods need the same time to load the full model at the original resolution. With a larger
bandwidth, the SIG method becomes slightly faster, as the decode time of the PBG method becomes a bottleneck.
The opposite is the case for a bandwidth smaller than 2 MBit / s, in such cases PBG is slightly faster because
less bytes need to be downloaded (Tab. 5.1), and because decode time is hidden by the longer download time.
The timings were taken using a Google Chrome Desktop Browser (version 26), and Mozilla Firefox (version 20)
showed a comparable performance.

In general, the less instrusive PBG method, using a dedicated binary container format for progressive transmis-
sion, seems more promising than the image-based SIG approach. The potential bottleneck of spending more
time on decoding than on downloads could be faced in many ways, for example by unifying some progressive
refinement steps (e.g., using 4 instead of 8 refinement levels). As a drawback, however, we can observe that,
during the first few seconds, we may get in fact worse results than for the SIG method, as can be seen in the first
image of Fig. 5.6. This is due to the missing index data, which has to be downloaded first before we can perform
iterative refinements. Finally, PBG decoding is still performed inside the JavaScript layer, using the client’s CPU
power - this is not an optimal situation, especially for mobile devices. An alternative approach should therefore
use a progressive representation which also takes the index data into account (one such approach is the POP
buffer method presented within the following chapter).

119

5. Progressive Delivery

(a) 8 s (b) 10 s (c) 12 s (d) 14 s (e) 16 s (f) 18 s (g) 27 s

(h) 8 s (i) 10 s (j) 12 s (k) 14 s (l) 16 s (m) 18 s (n) 27 s

Fig. 5.6.: Progressive Streaming of the subdivided happy buddha model. Top row: SIG encoding. Bottom row:
PBG encoding. Seconds passed since the first download started are indicated below each image.
(Image: [LJB∗13])

120

5.3. POP Buffers

5.3. POP Buffers

Within the respective conference paper, my coauthors and me have proposed POP Buffers, a lightweight, straight-
forward progressive encoding scheme for general triangle soups, which is particularly well-suited for mobile and
Web-based environments due to its minimal requirements on the client’s hardware and software [LJBA13]. There
are several reasons for the fact that traditional Progressive Mesh (PM) formats have not yet been widely used in
the context of 3D Web applications, which raised the need for an algorithm like the POP buffer method:

• Almost all of the existing PM methods optimize for Rate-Distortion (R-D) performance. However, this
aim does not address the crucial tradeoff between compression ratio and decode time, which has only been
mentioned in a few pioneering PM publications [Hop98, PR00], and within rather recent results from the
Web3D community [LCD13, LWS∗13].

• Many existing PM methods make assumptions about the topology of the input mesh, for example that it
is a two-manifold surface mesh [AD01]. In contrast, a general format must be able to handle any kind of
input mesh.

• Fast encoding is generally not considered a prior aim at all. Nevertheless, this aspect can become important
in some 3D Web scenarios, for example in the context of 3D model community platforms, where servers
quickly prepare new assets for transmission and online presentation.

As a consequence of all these points, common Web3D data formats have rather small compression ratios com-
pared to PM methods, but keep encode time and especially decode times as small as possible [LCL10,BJFS12b,
Chu12a]. This ensures an interactive user experience, and it is usually a good choice as long as the available
bandwidth is not absolutely minimal (i.e., only a few MBits per second), which would justify advanced compres-
sion methods. Because of all these reasons, one may argue that a progressive mesh transmission format for the
Web must take into account different requirements than past PM algorithms.

The POP buffer method is a novel mesh encoding method which can be performed at interactive rates and is
able to handle arbitrary triangle soups. It enables fast progressive transmission and basic Level-Of-Detail (LOD)
features. The key aspect of the algorithm is a novel, stateless storage structure, which can be progressively
transmitted to the client’s GPU. This structure, called the Progressively Ordered Primitive (POP) buffer, provides
an interlaced transmission of the input model’s triangle data, comparable to the progressive Adam7 algorithm
used by PNG images on the Web. While the POP buffer method does not include sophisticated compression
capabilities, it is very well-aligned to GPU structures and introduces zero CPU-based decode steps on the client
side. This is especially crucial if devices require their precious CPU power for other tasks, or if they are simply
technically limited in this domain. The approach is therefore particularly well-suited for Web-based environments
and mobile clients.

5.3.1. The POP Buffer Concept
The POP buffer method builds on the most widely used geometry representation in modern rendering pipelines,
which consists of index buffers and vertex buffers [SNB07]. This section describes in detail how nesting and
reordering of triangle data is realized within the stateless Vertex Buffer Objects (VBOs) that can be used for
rendering, and how the proposed reordering scheme realizes a straightforward structure for progressive streaming
and basic LOD control.

Clustering We assume each 3D model is given as a triangle mesh, with n vertex positions {vi}, with index
i < n, and triangles T ⊆ {(i, j,k) | i, j,k < n}. To obtain different LOD representations, we can then compute an

121

5. Progressive Delivery

Fig. 5.7.: Switching the grid resolution. Triangles marked in red become degenerate at the lower level and can
thus be sorted out. Note that the grids are nested, so that degenerate triangles never reappear at lower
levels or, conversely, triangles never degenerate at higher levels. (Image: [LJBA13])

axis-aligned bounding box, represented by the minimal and maximal corner bmin,bmax ∈R3, for the input mesh.
Given a maximal number of bits q for the quantization, we can transform this box to a uniform grid in R3 with
integer grid points in {0,1, . . . ,2q−1} for each coordinate, the integer lattice (Z2q)

3.

To map the original 3D surface to the grid of integer coordinates, the following transformation is applied to each
vertex position

wic =

⌊
2q−1

bmaxc −bminc

(vic −bminc)+
1
2

⌋
, (5.1)

where c denotes the index of coordinate direction. All wic are then integers inside the range {0,1, . . . ,2q−1}, as
desired.

Let the quantization level be denoted l ≤ q. Using POP buffers, the main idea for vertex clustering is to only
use the l most significant bits of wic , which corresponds to using a reduced uniform grid with integers in the
range {0,1, . . . ,2l−1}. We can realize this as a truncation function τl(n) = bn/2q−lc ·2q−l , extracting the l most
significant bits from a positive integer value n, which can also be implemented using simple bit operations. Based
on the truncated integers, the inverse of the bounding box transformation becomes

vic =
bmaxc −bminc

2l wic +bminc . (5.2)

Using the truncation function, we are able to easily modify the uniform grid resolution in both directions: trun-
cating one bit less than before is equal to doubling the grid resolution, and vice versa. We can therefore refer to
these two operations as cell merge and cell split, as illustrated in Fig. 5.7.

Nesting We make the following observations: if two points in space p,q are mapped to identical points at level
l′ they necessarily share the same l′ most significant bits. Consequently, they also have the same k < l′ most
significant bits and are also mapped to the same point for all levels k ≤ l′. Conversely, if they are mapped to

122

5.3. POP Buffers

lili-1 li+1

...

refinecoarsen

...

(a) Sander and Mitchell [SM05]

li

li-1

li+1

...

cell split

cell merge

0 mnmi+1mimi-1
...

...

...

(b) POP Buffer

Fig. 5.8.: The POP buffer in GPU memory, compared to the approach of Sander and Mitchell. Their method
stores several LOD representations in disjoint subsections of a mesh data buffer M. In contrast, the
POP buffer approach reorders mesh data in such a way that the mi elements of each buffer are fully
contained within the mi+1 elements of the succeeding buffer. (Image: [LJBA13])

different points for a level l′′, they differ in their l′′ most significant bits – and are mapped to different points for
all levels k ≥ l′′.

This observation can be extended to edges and triangles. If the two endpoints of an edge in the triangulation are
mapped to the same grid point, the edge is degenerate. If this happens at level l′, then this is true for all levels
k ≤ l′; conversely, if the edge has non-zero length at level l′′, this is true for all levels k ≥ l′′.

A triangle becomes degenerate once one of its edges is degenerate. For each triangle with index t, we denote the
smallest level at which it becomes non-degenerate lt . Since each triangle is degenerate for all levels k < lt , and
non-degenerate for all levels k ≥ lt , the levels lt form equivalence classes over the set of triangles. Elements in a
class form a set Ql = {t | l = lt}. The nesting property makes identifying the non-degenerate triangles required
at a certain level l particularly easy: ∪k≤lQk.

Intuitively, the nesting property can be captured as follows: If two vertices have different quantized coordinates
at a certain level, they will also have different coordinates at higher levels because we only add bits, but never
change the values of existing bits. Vice versa, if all bits of two different points are equal on a certain level, they
will remain equal on lower levels, since we only remove bits and, again, don’t change values of the other existing
bits.

Reordering We call the level lt for triangle t the pop-up level as, intuitively, the triangle appears at this level
as the model is refined. Now we sort the triangles according to their pop-up levels. This results in one reordered
sequence of the original triangles, which we call the Progressively Ordered Primitive (POP) buffer.

Discrete sorting can be efficiently performed in O(n) operations (where n is the number of triangles), exploiting
that the maximum number of equivalence classes is q. The whole sorting procedure simply reduces to creating
containers for each level k ≤ q and then concatenating the containers.

Fig. 5.8 illustrates the POP buffer and compares it to the approach of Sander and Mitchell [SM05], where several
static LOD representations are stored disjointedly in memory. Since each detail level of the POP buffer reuses
all data of lower detail levels, progressive loading becomes trivial: everything we need to do to refine our model
is to push additional triangle data at the back of our buffer on the GPU. Furthermore, switching the LOD can

123

5. Progressive Delivery

be realized by adjusting a single parameter of the corresponding draw call, which just specifies the amount of
rendered primitives from the beginning of the buffer.

It is worth noting that the vertex and triangle data in each set Ql can be freely sorted, according to the need of
the application. Yet, sorting across the boundaries of sets is impossible. This limitation can result in reduced
locality of the triangles in memory, with a possible effect on the framerate, as will be discussed later in Sec. 5.3.4.
The practical aspects of progressive transmission and basic LOD management are discussed within the following
sections 5.3.2 and 5.3.3.

5.3.2. Progressive Transmission
The greatest advantage of the POP buffer method is that it can be used for streaming applications in a very
straightforward way: incoming vertices and triangles can simply be pushed to the back of the corresponding
buffers.

At this point, the question arises how refinement of the quantization scheme is realized. One possibility would
be to always explicitly update the quantized positions of all vertices in GPU memory, as soon as data from a new
precision level is available. In that case, we would always only send the new bits for existing vertex positions,
and all the currently used bits for new vertex positions. Nevertheless, this requires additional processing of
incoming data, and additional GPU memory transfer. Such steps can be quite time-consuming, especially for
larger models [MSGS11]. The situation is even worse if client devices with limited CPU power are used, and
we also don’t want our Web application to block user interaction during the decoding process (or to rely on
multi-threading).

To overcome this limitations, the POP method choses to always transmit the full-precision vertex positions, and to
perform the quantization on-the-fly in a vertex shader during rendering. Obviously, this leaves some bits unused
during early stages of transmission, but it was found that the drawbacks of this method are clearly outweighed
by its advantages, which are as follows:

• CPU-based decoding steps are completely avoided.

• GPU memory traffic is kept minimal.

• The POP buffer structures in GPU memory are stateless.

The last point has several interesting implications, especially for fast LOD selection and instanced rendering (see
Section 5.3.3).

As can be seen in Fig. 5.9, the amount of vertices which are shared among the triangles is relatively small in the
beginning, since the interlaced transmission scheme tends to spread non-degenerate triangles within each level
over the mesh. Nevertheless, the fact that we do not explicitly merge collapsed vertices of the intermediate stages
of the model has the great advantage that we do not need to manipulate the geometry or connectivity data at all,
once it has been downloaded.

5.3.3. Rendering and LOD
This section describes how the POP method selects a matching LOD during runtime by using a bound on the
geometric error, depending on the distance of each part to the view plane. Given the error bound, it is then also
explained how to avoid cracks along the partition’s boundaries when rendering different sub-meshes of a large
triangle mesh with individual LOD.

124

5.3. POP Buffers

Fig. 5.9.: An intermediate stage of interlaced triangle data transmission. Left: Raw triangle data for detail level
l = 5, without clustering. Right: Same data, with clustering applied during rendering.
(Image: [LJBA13])

Fig. 5.10.: Image-space error for level l according the
bound provided by Eq. 5.5 (left) and a coarser
level l−3 (right). (Image: [LJBA13])

Error Estimation. We know that, at level l, we
have dismissed q− l bits of the representation of each
vertex or, in other words, we have packed all vertices
in a box with diameter ‖bmax−bmin‖

2l into one position.
Because we choose the center of this box as the vertex
position, the error at level l is bounded from above by

εl =
‖bmax−bmin‖

2l+1 . (5.3)

Given this bound on the size of the error in world co-
ordinates, we transform it to screen space, following
the derivation of Hao and Varshney [HV01]. We as-
sume quadratic pixels, an aspect ratio of one, a view-
port of dimensions w×h, and field of view θ. We find
the approximate size of one pixel projected into world
coordinates at distance d to be

η =
2d tan(θ/2)

h
. (5.4)

If we wish to hide geometric errors, we need to make sure that they are smaller than one pixel, i.e.

l >
⌈

log2
‖bmax−bmin‖

η

⌉
−1. (5.5)

By this choice of level, there is no need for blending vertices at the transition between levels, while still avoiding
popping artifacts. Nevertheless, smaller shading errors may be visible, even with a guaranteed sub-pixel geomet-
ric error. The reason for this lies in the shifted vertex positions: although we are using the full-precision (e.g.,
16 bit) normal information at each point, the normals are not adapted to fit with the surface normal at the new
position of each vertex after quantization.

125

5. Progressive Delivery

(a) Full, #t=1204 (b) [RB92], #t=547 (c) [Wil11a],
#t=570

(d) POP, #t=512 (e) [GH97], #t=546

Fig. 5.11.: Simplification to approximately 40% of triangles. (b)–(d) Vertex clustering methods. (e) Quadric-
based simplification. (Image: [LJBA13])

Fig. 5.12.: Closing cracks between sub-meshes. Crack-free borders are achieved by sorting a small number of
protected vertices to the beginning of the vertex buffer. (Image: [LJBA13])

Fig. 5.10 shows a comparison of image-space errors for two different quantization levels, revealing that shading
errors occur especially at sharp edges. Still, the choice to keep the full-precision normal for each vertex provides
a good preservation of discontinuities, especially compared to vertex clustering approaches that are explicitly
unifying vertices (see the discussion of attribute discontinuities in the work of Willmott [Wil11b]). However, as
can be seen in Fig. 5.11, methods based on error-controlled edge collapses, like the one proposed by Garland
and Heckbert [GH97], can provide much better results with the same triangle budget. On densely tessellated
flat surfaces, for instance, such algorithms are able to remove many triangles without a visible change, while
keeping important details in other regions of the mesh. In contrast, using a fixed quantization grid instead leads
to blocky appearance, and small features get lost at lower precision levels. Nevertheless, progressive methods
based on edge collapses in turn lack almost all of the advantages of the proposed POP buffer structure (for
instance, handling triangle soups, zero decode time and instanced rendering).

As for the normals, we are always using the full-precision texture coordinates. Errors arise in the form of
stretched texture regions. However, by keeping the original texture coordinates at the quantized positions, we can
already guarantee that texture coordinates are never mistakenly moved after simplification, which is especially
important when using a texture atlas. We found that this simple and practical approach provided results of
surprisingly good quality. An example is shown in Fig. 5.15.

Mesh Partitioning and Crack Prevention. The appropriate LOD depends on the minimal distance d of an
object. A large model, however, might span quite a large distance interval. This results in many vertices being
quantized to a precision that is significantly higher than necessary. To prevent this, it is common to partition a

126

5.3. POP Buffers

mesh into several sub-meshes, and then computing an appropriate LOD for each sub-mesh independently. The
approach of the POP buffer method is to simply compute individual bounding boxes and to use the equations
presented previously to bound the error for each sub-mesh.

A general problem that comes with mesh subdivision for LOD management are cracks in an originally closed
surface [SM05, MSGS11], occurring when boundary vertices of sub-meshes are mapped to different positions
in world coordinates. A common solution is to use the same quantization grid for each sub-mesh, along with
roughly equally sized bounding boxes [SM05, LCL10]. However, we still encounter cracks in the mesh if the
precision levels of adjacent sub-meshes differ, which can especially be visible when coarser levels are used during
streaming.

To overcome this problem, we have decided to simply protect the positions of all vertices that are located at the
borders of the sub-meshes by always using the highest possible quantization level l = q. All protected vertices
are flagged during preprocessing, and the computation of degenerate triangles consequently considers the high-
precision coordinates for these vertices.

To identify protected vertices during rendering, we sort them to the beginning of the vertex buffer and provide
their total number as an additional uniform variable in the vertex shader. Each rendered vertex can then simply
check this number against its ID (e.g., for OpenGL-based implementations, the value of gl_VertexID, if
available). Based on the result, the vertex shader can then decide whether the vertex should be displayed with
the full precision of q bits. Fig. 5.12 illustrates the difference for a real-world example.

It is worth noting that the idea of protected vertices could also be used for other applications, for example
preserving feature edges in a mesh. Nevertheless, this also decreases the amount of degenerate triangles at each
level, and therefore limits the overall efficiency of the streaming process, which is why the POP method restricts
the usage of protected vertices to border vertices.

Instanced Rendering A big advantage of the POP buffer is that it supports instanced rendering and streaming
(unlike other progressive streaming and LOD techniques [SS97, Sva99, HSH09, MSGS11]). Each instance of a
model only needs to manage a single integer value, representing its current level of detail. During rendering, one
can then simply look up the number of primitives for this level and draw the corresponding number of elements
from the POP buffer, using matching vertex shader settings for quantization (see Fig. 5.13 for an example).

It is worth noting that rendering a single geometry from different view points during another rendering pass
(for example, for obtaining a shadow map or a picking buffer) can be done in exactly the same way. Many
applications in real-time graphics might therefore greatly benefit from this approach too.

5.3.4. Results & Discussion
Encoding. In many scenarios, the encoding of meshes into a specific format has to be performed at interactive
rates [Wil11b]. An example could be a Web-based platform where all users can upload 3D assets, which are then
instantly processed on a server for direct online presentation. The POP buffer structure fits this purpose very
well, since even large meshes can be processed within a fraction of a second, as can be seen in Table 5.2. Larger
models have been previously subdivided. The test machine used was a MacBook Pro notebook with an i7 CPU,
2.4 GHz and 4 GB RAM, and triangle data has been organized into the proposed POP buffer structure at rates of
up to 4 million triangles per second, using a sequential, CPU-based implementation.

As the fast labeling approach used by the POP method is inherently parallel, an optimized (e.g., GPU-based)
implementation would certainly achieve even faster run times.

127

5. Progressive Delivery

Fig. 5.13.: Instanced rendering, with color-coded LOD. All 36 instances share a single, stateless POP buffer.
(Image: [LJBA13])

Fig. 5.14.: The two leftmost charts depict the total amount of used triangles and used vertices at each precision
level for different models. The rightmost chart illustrates the Hausdorff error for several levels of the
quantized bunny model. (Image: [LJBA13])

Model #Tris Quant. Reord. Total

Building 1,896 0.1 0.2 0.3
Fandisk 12,946 0.3 1.7 2.0
Tractor 49,480 2.0 6.9 8.9
Bunny 69,451 1.9 9.3 11.2
Horse 96,966 2.9 14.5 17.4
Wheel 257,376 9.5 31.9 41.4
Dragon 867,522 23.5 135.9 159.4
Buddha 1,087,716 27.9 176.3 204.2

Tab. 5.2.: Encoding time, given in ms, for various mod-
els (input data quantization, reordering).

Another interesting topic is how the POP algorithm
relates to Streaming Meshes, as proposed by Isenburg
and Lindstrom [IL05]. The method maximizes data
coherency by reordering the mesh data, which allows
mesh processing algorithms to be executed on out-of-
core data volumes, in a sliding window fashion. The
approach of reordering mesh data is quite similar to
the POP method, but both algorithms rely on differ-
ent criteria for reordering. While the final POP struc-
ture itself is therefore not compatible with their mesh
format, we note that the encoding algorithm could
also operate on a streaming mesh, in order to perform
an efficient out-of-core construction of a POP buffer
structure.

128

5.3. POP Buffers

(a) 4 bit, 5.5% triangles (b) 5 bit, 16% triangles (c) 6 bit, 36% triangles (d) 16 bit, 100% triangles

Fig. 5.15.: Our fast progressive streaming method completely avoids CPU-based decoding steps, making it very
attractive in Web-based and mobile environments. The full range of LOD representations has been
created within only 9 ms. (Image: [LJBA13])

Streaming. As a consequence of the interlaced triangle data transmission, the amount of new vertices is rel-
atively high in the early levels, as also illustrated in Fig. 5.14. Fortunately, this drawback is compensated by
the relatively small amount of triangles within those levels, and it is only valid for indexed rendering. Fig. 5.15
demonstrates that a first impression of the shape is already available for a small fraction of the total data.

As can be seen in the rightmost chart of Fig. 5.14, the geometrical error vanishes quickly, since precision is
doubled for each incoming batch of triangle data. Note that this chart does not represent an R-D curve, since it
is independent from any encoding or compression scheme, which could be used at the cost of additional decode
steps.

With the POP buffer approach, the time needed to decode data is always zero, therefore the time needed to
download the levels is crucial. As the maximum precision level, q = 16 bits provide a sufficient quality, therefore
the bunny model, for example, has an uncompressed size of 34,834× (3× 2) = 209,004 bytes for the vertex
positions. It furthermore needs 69,451× (3× 2) = 416,706 bytes for the connectivity, if 16 bit indices are
used (like it is for example common when using WebGL). In sum, the bunny mesh can hence be represented by
625,710 bytes, and by some additional metadata (like the number of triangles within each level), which can be
sent separately and has a neglectable size.

Assuming that, for example, an end-to-end connection with a bandwidth of 16,000 kbit/s is used, this means
that the bunny mesh can be completely downloaded within 0.31 seconds. For any compression method, this
means that it has to be able to decompress at least 221,991 triangles/s in order to deliver the full mesh at the
same time as the uncompressed POP buffer approach. Most popular PM approaches, if they have investigated
decompression speed, have reported significantly slower decompression times (e.g., Alliez and Desbrun reported
5,000 triangles/s [AD01]). At the time the POP buffer method was designed, the latest PM compression that was
available had been provided by Maglo et al., also only reporting a decompression rate of 122,000 triangles/s,
using an i7 CPU and 2.8 GHz [MCAH12].

As can be seen, even in the raw, uncompressed format, the POP method is able to deliver the triangle data in a
progressive manner within an acceptable amount of time. This is especially true if mobile client devices are used,
where the decompression performance is usually expected to be much worse than for desktop machines [LCL10,
LWS∗13].

129

5. Progressive Delivery

Fig. 5.16.: Due to its lightweight, straightforward de-
sign, the progressive streaming and LOD
approach of the POP method works well
with mobile devices (here: iPad2 and
iPhone5). (Image: [LJBA13])

Rendering. For an experimental evaluation, the POP
buffer method was implemented in a lightweight,
browser-based render client, solely relying on standard
3D Web technology, such as JavaScript and WebGL.
This made it possible to easily test the efficiency of the
POP buffer as a basic LOD method on different hard-
ware platforms, including various WebGL-capable mo-
bile devices (see Fig. 5.16).

Resulting frame rates for different triangle counts are
given in Table 5.3. On all devices, smooth user interac-
tions can be ensured by instantly switching to a lower
precision level during camera movements (see the ac-
companying video of the POP buffer paper for a brief
demonstration)1. As can be seen, the POP method resulted in a significant speedup in rendering time, compared
to regular vertex buffers without any LOD, on all tested platforms. It can furthermore be seen that the speedup
shown by the experiments is not due to limited fragment shading costs at far distances, as similar results have
been obtained for varying precision with a fixed camera position.

Coverage l #Tris PC iPhone 5 iPad 2 Nexus 7

26.9% 9 913K 158 14 7 1.5
27.1% 7 367K 246 30 16 2.5
27.2% 6–7 294K 257 33 19 3
27.4% 6 141K 313 40 33 5

Coverage l #Tris PC iPhone 5 iPad 2 Nexus 7

26.9% 9 913K 158 14 7 1.5
4.0% 7–8 367K 248 30 16 2.5
0.5% 6 141K 315 40 33 5
0.3% 5 56K 321 40 34 8

Tab. 5.3.: Rendering performance (fps) for the Happy
Buddha model, using a 512× 512px view-
port. The first column indicates viewport
coverage. Top: varying precision, fixed
camera distance. Bottom: adaptive preci-
sion, varying camera distances.

One could also suppose that the GPU’s ability to filter
out degenerate triangles before the fragment processing
stage would make our LOD scheme less efficient, or
even obsolete. However, we did not measure any sig-
nificant speedup when using only quantization and al-
ways rendering the full buffer. The reason for this is that
our application is vertex bound (a basic assumption for
most LOD methods), and that degenerate triangles can
only be identified after the vertex processing stage.

As already noted, the POP method’s reordering method
can be seen as an interlacing scheme, spreading the tri-
angles of each refinement level over the whole mesh (see
Fig. 5.9). This can potentially have a negative impact on
the average cache miss ratio (ACMR) during rendering,
and therefore also on the overall rendering performance.
Optimizing for example the full Horse model with the
Tipsify method [SNB07] results in an ACMR of 0.66. In
contrast, all one can do in the context of the POP buffer

is optimizing the different buffer segments, resulting in a higher ACMR from 2.15 to 1.31 for the several levels.
Fig. 5.17 shows the ACMR for all levels of the Bunny model, reference values have been obtained by optimizing
the entire snapshot of the model at each level separately.

In the theoretical case, rendering performance can be linearly dependent on the ACMR [SNB07]. Modern GPUs,
however, process batches of vertex data in parallel and are less sensitive to data locality [Kil08]. One can see this
effect in the framerate measurements: the total reduction of the vertex count during rendering was found to be
far more important than the influence of caching mechanisms.

1https://www.x3dom.org/pop

130

https://www.x3dom.org/pop

5.3. POP Buffers

Fig. 5.17.: Left: Cache miss rate for different levels of the Stanford Bunny. Right: Render performance, com-
pared with cache-optimized data, using 401 instances of the model. (Image: [LJBA13])

The performance loss due to increased cache miss rate is illustrated in Fig. 5.17. The locked version of the
POP buffer was using fixed precision levels (instead of true view-dependent LOD) to focus solely on cache miss
performance during the comparison. As can bee seen, the results indicate a loss of performance due reduced data
locality of less than 20% on a modern GTX 670 GPU, which is far better than the implied linear correlation with
the ACMR.

In summary, the POP method has the following benefits:

• As the concept of quantization is independent from any assumptions about topology or manifoldness, the
method is able to handle arbitrary triangle soups.

• The mesh representation is obtained by simply reordering the input mesh data according to some straight-
forward criteria. As a consequence, even large meshes can be automatically converted at interactive rates.

• The resulting LOD representations are nested. As a consequence, mesh data can be transmitted over
networks in a progressive manner.

• Streaming applications like Web apps can directly send downloaded sections of the POP buffer to GPU
memory, without any CPU-based decoding steps. This is especially interesting for setups where the client’s
CPU power is a critical resource.

• The POP buffer is stateless, meaning that it is not manipulated at all when switching the LOD. It is the
first progressive 3D mesh representation with this unique property, which helps to minimize GPU memory
traffic and is also very useful in the context of instanced rendering.

• The POP buffer has exactly the same memory footprint as a regular single-rate buffer.

• The POP buffer method can be easily implemented, even with WebGL or GPUs that have a very limited
feature set, making the integration into existing pipelines very simple and attractive.

Still, the POP method has some specific drawbacks compared to more specialized approaches:

• PM methods provide advanced data compression capabilities. They deliver superior results if the client
has powerful hard- and software for decoding, and if the available bandwidth is rather low. However, PMs

131

5. Progressive Delivery

can not be efficiently used with multiple instances of a mesh, and adjusting (at least) the connectivity data
during LOD management also introduces additional processing overhead.

• Although they consume more memory and do not allow for progressive streaming, discrete LOD methods
provide better visual results and a more sophisticated handling of attributes without using more triangles.

• Since the POP method performs a reordering of the input triangle data, which can only be cache-optimized
per LOD section, it stands in conflict with cache performance optimization schemes.

• The POP method is unable to handle non-rigid mesh animations (for instance, such used for skinned
character models).

Overall, it can be summarized that the POP buffer method can be especially useful for fast, progressive streaming
in Web-based and mobile setups.

Fig. 5.18.: POP buffer demo by B. Hättasch

In practice, the POP buffer method and its predecessor PBG have
both been initially implemented using two existing frameworks.
The preprocessing part has been integrated into the InstantReality
aopt tool2 The client-side part has been integrated into the open-
source X3DOM framework for declarative 3D on the Web3. Sep-
arate public implementations have been provided by Benjamin
Hättasch4 and Thibaut Seguy5. An example screenshot of the
demo application by Benjamin Hättasch is shown in Fig. 5.18.
Other experimental applications exist, for example in the context
of progressive LOD for voxelized 3D scenes [Lys18]. Finally, the
method has been implemented and used in the context of different
research and visualization projects (see the work of Haehn et al. for an example [HHM∗17]).

2http://www.instantreality.org/
3http://www.x3dom.org/pop
4https://github.com/bhaettasch/pop-buffer-demo
5https://www.npmjs.com/package/pop-buffer

132

http://www.instantreality.org/
http://www.x3dom.org/pop
https://github.com/bhaettasch/pop-buffer-demo
https://www.npmjs.com/package/pop-buffer

5.4. Summary

5.4. Summary

Within this chapter, we have investigated different approaches towards efficient streaming of 3D mesh data for
Web applications. The first approach investigated was Progressive Binary Geometry (PBG), as derived from
the Sequential Image Geometry (SIG) approach by Behr et al. [BJFS12a]. This method had the advantages of
being easy to implement and providing more fine-grained progressive streaming than SIG, which is constraint
to deliver always one byte with each new chunk of mesh data. However, while being optimized for the Web
environment, PBG still has a notable decode overhead, making the method dependent on the client’s CPU power.
The second approach we investigated was the Progressively Ordered Primitives (POP) Buffer method. The POP
Buffer approach has several unique properties, such as the possibility to render multiple levels of detail from the
same, static data in GPU memory. Still, it’s greatest advantage is that downloaded mesh data can be directly
pushed to the client’s GPU, without any explicit CPU-based decoding step in the client’s JavaScript layer. This
makes the particularly well-suited for streaming 3D data to mobile devices. A drawback of the POP Buffer
method is its potentially decreased rendering speed, due to decreased vertex cache locality. However, typically,
this effect will only be notable if the data is already rather large and therefore already rendering at lower frame
rates.

133

5. Progressive Delivery

134

III
Results & Conclusions

135

6 Resulting Pipeline

We have just seen the two main parts of this thesis, which were each addressing a subquestion of our research
question.

The first subquestion was: Is it possible to automatically convert a detailed 3D mesh into a compact, yet visually
similar representation? This question has been investigated within the first part of the thesis (entitled Offline).
Within this part, we have investigated mesh processing algorithms that turn a high-resolution 3D asset into an
efficient textured representation with low polygon count, representing nearly the same visual information in a
very compact fashion. Within Chapter 2, we have first discussed mesh simplification techniques. We have seen
that the classic quadric edge collapse algorithm allows to efficiently reduce the size of a high-resolution input
mesh without sacrificing too much visual quality, while offering acceptable runtime performance. A special
focus of the chapter has been on a novel, saliency-based method, entitled Local Curvature Entropy (LCE). For
surfaces that do not contain degradations or noise, this method has been proven to deliver better results than
previous approaches for saliency detection and saliency-driven simplification. Within the following Chapter 3,
we have explored existing techniques for automatic texturing, involving mesh segmentation, parameterization
and atlas packing. In this context, we have also discussed two novel algorithms which have been designed
as part of the BoxCutter method. The first algorithm allows for overlap removal with a minimum amount of
cuts, delivering superior results when compared to previous methods. The second algorithm is a cut-and-repack
strategy for compacting UV atlases, leading to highly efficient packings while introducing only a moderate
increases in boundary length. The combination of mesh simplification and automatic texturing allows for the
appearance-preserving reduction of high-resolution mesh data, resulting in a data set that is compact, yet visually
very similar to the original one. Therefore, this combination of techniques leads us to a positive answer to the
first subquestion.

The second subquestion was: Is it possible to find an efficient encoding for 3D mesh data that allows for streaming
over networks and online presentation based on standard Web technology? This question has been investigated
within the second part of the thesis (entitled Online). Chapter 4 covered the encoding of optimized 3D meshes
for efficient delivery over networks. We have explored different compression methods and performed two case
studies. Results of the first case study showed that true 3D mesh representations are indeed a feasible format for
real-time 3D visualizations as part of Web pages. Especially, we have seen that, for many application scenarios,
highly optimized 3D representations can achieve a similar degree of compactness as pre-rendered 360◦ image
series. The second case study showed that, besides file size, another crucial aspect is decode time. Especially on
mobile client devices with limited CPU power, the most compact format turned out to be not the best possible
solution. This is because the advantage of smaller files, allowing for faster downloads, may be rendered useless
when, at the same time, decode times are significantly longer than they would be for a less compressed format.
An optimal format for real-world 3D Web applications should therefore consider both aspects, download time
and decode time, and provide a well-balanced solution that is efficient to use with current browser technology

137

6. Resulting Pipeline

and works well on all possible client devices. We have explored such an optimized encoding, a novel format
entitled Shape Resource Container (SRC). Besides efficient encoding, the design of SRC covers several interest-
ing aspects, such as a self-contained binary encoding, interleaved, progressive streaming of mesh geometry and
texture data, an addressing scheme for meshes and textures, and a scheme for flexible 3D data compositing, using
a set of proposed new nodes for straightforward integration into X3D scenes. We have then briefly investigated
an expressive set of parameters for physically-based rendering, allowing for compact material descriptions in the
context of two popular 3D formats for the Web, X3D and glTF. Another related aspect is progressive transmis-
sion of 3D mesh data, and it has been investigated within Chapter 5. After reviewing previous work from the
research domain, as well as recent approaches from practitioners, we have explored two new formats, entitled
Progressive Binary Geometry (PBG) and POP Buffers. The POP buffer approach is an efficient extension of
PBG, and we have seen that it offers a unique set of properties that was previously unseen. Most notably, the
POP buffer method offers progressive streaming and LOD without changing mesh data in GPU memory, once it
has been downloaded. This property of using a stateless representation, coupled with zero decode time, makes
the method particularly attractive for 3D Web applications running on mobile devices, where the user experience
can be significantly enhanced through progressive streaming without any significant computational overhead.
The second subquestion can therefore be answered positively as well, since we have not only found an efficient
encoding that solely relies on standard Web technology, but also a lightweight format for progressive streaming
of 3D mesh data on the Web.

With both subquestions being answered positively, the research question can be answered positively as well, as
both parts taken together are providing a full pipeline that is able to optimize a highly detailed 3D mesh by turning
it into a compact, yet visually similar representation, optimally encoded for efficiently online presentation.

Within the following sections, we will first have a look at a more detailed overview over the full 3D mesh
optimization pipeline that has been designed and implemented as part of this thesis. We will then have a brief
look at the related InstantUV software, and at some practical results.

138

6.1. A Pipeline for 3D Mesh Optimization for the Web

6.1. A Pipeline for 3D Mesh Optimization for the Web

Fig. 6.1.: Full optimization pipeline, turning a high-resolution 3D mesh into a compact version for the Web. The
original model has vertex colors, consists of 440K faces and is 9.3MB large (binary PLY format). The
optimized model has texture maps, consists of 5K faces and has a size of 1.4MB (binary glTF format).

The full pipeline for 3D mesh optimization pipeline for the Web, as discussed within this thesis, is illustrated in
Fig. 6.1. Starting with a high-resolution, unoptimized 3D mesh, possibly with color information, it consists of
the following steps:

1. Mesh Simplification. The input data set is simplified to a low-resolution polygon mesh. During this
step, the main goal is to obtain a faithful approximation of the original geometry, but consisting of much
fewer polygons (Chapter 2). Methods for fast estimation of important features (saliency detection) can
be used to rank different regions of a mesh according to their level of visual importance, allowing for a
more aggressive simplification of less important parts while, at the same time, preserving important details
within the simplified mesh (Sec. 2.2).

2. Segmentation. To prepare for the next step (Parameterization), the simplified mesh must typically be
partitioned into multiple regions, with the primary aim of being able to parameterize them each individually
with minimal distortion (Chapter 3).

3. Parameterization. Within the context of polygon mesh processing, parameterization refers to the process
of unwrapping a 3D mesh to the 2D plane. This is often done with the help of a distortion-minimizing
metric (Chapter 3). Within the proposed optimization pipeline, this step also has to ensure that no overlaps
occur, as the resulting 2D layout should be used for texturing the 3D mesh within the next stage of the
pipeline. In practice, a common approach is to post-process a parameterized mesh in order to resolve any
2D overlaps by cutting through self-overlapping 2D charts and re-arranging the resulting pieces (Sec. 3.2).

139

6. Resulting Pipeline

4. Atlas Packing. As a result of the previous stages, one typically obtains a 2D layout for multiple charts,
which allow to parameterize the whole 3D surface with no or with minimal distortion, and without any
overlap. In order to efficiently use those charts, however, it is usually required to pack multiple charts
together into a common 2D domain for texturing, which is then referred to as the UV Atlas (Chapter 3). In
this context, having a compact UV atlas with good packing efficiency is a crucial goal, since bad packing
efficiency will eventually lead to a waste of memory (Sec. 3.3).

5. Baking Texture Maps. With a 2D texture atlas layout, finally, it is possible to generate texture images that
will map surface details of the high-resolution original mesh onto the low-resolution surface. This process,
which is referred to as Texture Baking, involves a sampling of the high-resolution surface at locations
corresponding to the texels of the texture images (Chapter 3, Sec. 4.2). The resulting texture maps will
then store surface details such as colors or normals.

6. 3D Mesh Encoding & Compression for the Web. The optimized 3D asset resulting from the previous
steps, consisting of a textured polygon mesh, can be stored in an arbitrary traditional 3D format, such as
OBJ or COLLADA. Such file formats are, however, not very efficient for transporting 3D assets over a
network (Chapter 4). Therefore, it is necessary to use a compact, dedicated transmission format for 3D
mesh data on the Web. One important tradeoff in this context has to be made between two contradicting
goals: high compression rates and fast transmission (Chapter 4). Furthermore, in order to guarantee the
best possible user experience, a progressive transmission may be desired, showing an early preview that
is then gradually refined as new data is received by the client (Chapter 5). The SRC format (Sec. 4.4) is
well-suited in this context, since it fulfills all of the mentioned requirements. However, the most widely
adopted format nowadays is glTF 2.0, which is missing capabilities for progressive transmission, but offers
an efficient encoding and an expressive physically-based material model (Sec. 4.5).

As can be seen from the example shown in Fig. 6.1, this fully-automatic optimization pipeline is able to generate
results that are significantly smaller in size than the high-resolution input data, yet of similar visual quality. This
is mainly due to the use of texture images, storing the surface attributes more efficiently than a high-resolution
mesh that uses per-vertex colors, for example (see Sec. 4.2). Since the quadric edge collapse algorithm used
for simplification generates good geometric approximations for the underlying low-resolution mesh, the textured
result is visually nearly identical to the original data. Visible errors may occur at regions of fine texture detail,
due to the limited texture resolution, or at the silhouette of the low-resolution mesh (Sec. 4.2). The resulting
compact meshes can be efficiently encoded using the SRC or glTF formats, which are ready-to-render since they
are not involving any CPU-based decoding steps on the client side. This has proven to be a very useful property,
especially when an application is also targeting mobile client devices (Sec. 4.3).

140

6.2. The InstantUV Software: Example Results

6.2. The InstantUV Software: Example Results

Fig. 6.2.: Optimized 3D model exported in binary glTF format and visualized using a variety of renderers. Opti-
mization has been performed fully-automatically, using the InstantUV software.

The basic algorithmic pipeline proposed within this thesis has been implemented and made available in the form
of the InstantUV software of Fraunhofer IGD. The software consists of a C++ SDK, entitled the InstantUV SDK,
and a command line tool, entitled Mesh Optimization and Processing System Command Line Interface (MOPS
CLI) (Fig. 6.2). The framework includes methods for mesh simplification, mesh segmentation, UV unwrapping,
atlas packing, texture baking and Web-ready export (using the glTF 2.0 format). A simple example of an opti-
mized 3D scanned model is shown in Fig. 6.2. The original data set of 34.3MB (textured OBJ, 250K triangles)
has been reduced to less than 3MB (binary glTF format, 20K triangles), which allows for fast transmission and
efficient visualization, using different popular rendering engines. The renderers of babylon.JS, Three.JS and
facebook are all based on Web technology, while the MS Mixed Reality Viewer is a native application, running
on a Windows Surface tablet PC. The optimized 3D model uses a physically-based material description, allowing
for a realistic appearance, while being highly compact and hence efficient to render in real-time.

Users of InstantUV are able to optimize untextured or textured models, as well as such that only have vertex
colors. Using the MOPS CLI command line tool, for example, the following simple command can be used to
perform the whole 3D optimization and export the result as a directory, containing a ready-to-use Web viewer
based on HTML5 (where the 3D model will be embedded in glTF format, using a WebGL-based 3D engine):

mops -i myModel.ply --Make_Compact -w web

In this case, the input model is converted to a full HTML5 Web page that is placed in a directory entitled web.
Since the command line tool may easily be invoked by a script, it is very easy to integrate into batch processing
workflows. This allows, for example, to optimize an entire collection of hundreds of 3D models in just a few
hours (for example, over night), without any manual steps, producing a ready-to-use glTF file or full Web page
for each of the input data sets. In addition, users can seamlessly integrate the optimization functionality offered
by InstantUV into their own native applications, using the InstantUV C++ SDK.

141

6. Resulting Pipeline

(a) 500K triangles (b) 20K triangles (c) 318K triangles (d) 70K triangles

Fig. 6.4.: InstantUV optimization results for two full-body scans, each result obtained within less than 15 sec-
onds, using the MOPS command line tool. For the optimized version, a partial wireframe overlay is
shown as well, illustrating the underlying mesh. 3D input models courtesy of Onacasoft / Psychic VR
Lab, Japan (left) and DIG:ED GmbH, Germany (right).

Fig. 6.3.: 3D Pergamon Altar (Pergamon-
altar c© Staatliche Museen zu
Berlin, Antikensammlung).

Several customers of Fraunhofer IGD already use InstantUV in or-
der to optimize different kinds of 3D models, arising from 3D scan-
ning. This includes captured environments, characters, or single
objects. In all cases, a major reason to use InstantUV has been the
fully-automatic optimization, significantly simplifying processing
workflows that would otherwise require dedicated 3D expertise and
various professional tools.

One of the first applications of the software has been the visual-
ization of the digitized Pergamon Altar as part of a public 3D Web
application, as shown in Fig. 6.3. Here, InstantUV has been used to
generate UV coordinates that were then used to bake light map tex-
tures for the model, storing precomputed light and shadows for ap-
pealing, yet efficient real-time online presentation. In addition, In-
stantUV was used to generate Web-ready versions of detailed scans
of the single friezes.

Stage Seconds
Loading 3.2
Simplification 2.4
Segmentation 0.1
Parameterization 0.5
Atlas Packing 3.0
Texture Baking 3.4
Compression & Output 1.9

Fig. 6.5.: Timings for optimizing a
500K triangles model.

Another use case is the complete optimization of 3D full-body scans,
including mesh simplification, segmentation, parameterization and atlas
packing, and texture baking. Two examples, provided by courtesy of In-
stantUV users, are shown in Fig. 6.4. For each of those examples, opti-
mizing them on a common Desktop PC (3.4 GHz i7-3770 CPU, 32 GB
RAM) took less than 15 seconds. A breakdown of timings for the opti-
mization of the left model shown in Fig. 6.4, consisting of 500K triangles,
is shown in Fig. 6.5. As can be seen, the loading of the high-resolution
input data (given as a 66.3 MB OBJ file plus a 3.4 MB texture file) al-
ready consumes 3.2 seconds, which is roughly 20% of the overall time
needed. The simplification step reduces the mesh down to 20K triangles,
needing 2.4 seconds to perform the quadric edge collapse decimation al-
gorithm. The following segmentation and parameterization steps operate

142

6.2. The InstantUV Software: Example Results

on this simplified mesh. The segmentation algorithm of InstantUV is very fast, since it is not performing any
Lloyd iterations (see Sec. 3.1), but instead relies on a greedy region growing strategy (similar in spirit to the
one proposed by Sander et al. in 2001 [SSGH01]). Since the following parameterization stage can unwrap each
3D chart separately, this process has been parallelized in order to speed up the overall computation. Roughly
half of the time needed for parameterization is consumed by the detection and removal of UV overlaps. The
following atlas packing algorithm uses a rasterized working space and various chart placement strategies, similar
to the packing method proposed in the context of BoxCutter, in order to produce high-quality packings. With
a processing time of 3s, this stage needs roughly as long as the previous mesh processing stages together (sim-
plification, segmentation, parameterization). The following texture baking process, although parallelized, needs
even a bit more time (3.4s). Here, two textures are created: a base color map and a tangent-space normal map,
each having a resolution of 2048×2048 pixels. The final compression and output stage converts the model to a
binary glTF file (with textures embedded) and writes it to disk.

As can be seen from the timings shown in Fig. 6.5, the actual processing of the input data set is performed in a
relatively short amount of time. This is due to extensive code optimizations, parallelization of operations where
possible, as well as careful evaluation and selection of algorithms. While the exact algorithms used for each stage
are not disclosed at this point, it is worth noting that the different possible algorithms at each stage (as discussed
within Sec. 3.1) can be used interchangeably. For example, one could use one of the different methods of Sander
et al. for segmentation, or alternatively, the D-Charts method or the Seamster algorithm [SSGH01, SWG∗03,
SH02, JKS05]. The options for parameterization are numerous as well, ranging from conformal methods, such
as ABF++, over isometric approaches, such as the ARAP method of Liu et al., to bijective methods that make
a subsequent overlap removal step obsolete, at the cost of increased distortion [SLMBy05, LZX∗08, JSP17].
Likewise, there is a wide variety of atlas packing algorithms which could be employed, as well as different
approaches towards texture baking. A concise introduction to the whole mesh optimization pipeline, along with
example results for a selection of algorithms for the different stages, can furthermore be found in the bachelor’s
thesis of Florian Brandherm, which I had the pleasure to supervise [Bra14].

143

6. Resulting Pipeline

144

7 Conclusion

This thesis has been dealing with the following research question:

Given a highly detailed 3D mesh, is it possible to design a fully-automated optimization pipeline that converts
this data into a compact, yet visually similar representation, using an encoding that allows for streaming over
networks and efficient online presentation based on standard Web technology?

To answer this question, it has been divided into two subquestions, which were both answered positively. This in
turn led us to a positive answer to the whole research question. The subquestions were the following ones:

1. Is it possible to automatically convert a detailed 3D mesh into a compact, visually similar representation?
This subquestions has been addressed within the first part of this thesis, entitled Offline. Within this part,
we have discussed 3D mesh processing methods which automatically turn a high-resolution input data set
into a compact, yet visually similar representation, being a textured low-resolution mesh.

2. Is it possible to find an efficient encoding for 3D mesh data that allows for streaming over networks
and online presentation based on standard Web technology?
This subquestions has been addressed within the second part of this thesis, entitled Online. Within this
part, we have discussed methods that encode a textured 3D mesh for fast transmission, using an optimized
format that is well-aligned with 3D Web technology and furthermore enables progressive streaming.

In order to answer the research question also through a practical proof of concept, I have created the InstantUV
software of Fraunhofer IGD, already allowing several customers to streamline their 3D optimization workflows.
The proposed SRC format and PBR-ready material model furthermore had significant impact on the design of
the glTF 2.0 standard, which is nowadays the most commonly used 3D data format on the Web. Therefore, the
entire proposed optimization pipeline has already been proven to ease today’s 3D optimization workflows for the
Web in practice, serving as a step towards the overall goal of making 3D experiences available to everyone.

145

7. Conclusion

146

8 Future Work

There are several possible directions for future work. On the one hand, incremental algorithmic improvements
are possible at all stages of the optimization pipeline. The BoxCutter method, for example, could be imple-
mented more efficiently by parallelizing parts of the algorithm, or by performing and in-depth profiling of the
run time for different stages of the cut-and-repack optimization procedure and then considering alternatives for
the most time-consuming parts. Since the algorithm is currently not optimized, this step will potentially allow
to significantly reduce execution times. To give another example, the POP buffer method, combined with SRC,
could be improved to optionally support a simple, yet efficient geometry compression method, allowing to sig-
nificantly reduce the file size while accepting a small increase in decode time. Since POP buffers tend to arrange
vertex data in a grid-like fashion, the question arises whether this property could be exploited for compression
purposes. The reordering also causes a drop in cache coherence for the respective mesh data chunks on the GPU,
potentially limiting real-time rendering performance. Tackling this problem would therefore also be another in-
teresting aspect for future work. On the other hand, more fundamental improvements to the algorithmic pipeline
proposed within this thesis are possible as well. One interesting aspect are fully-automatic approaches for robust
quad meshing and automated rigging, aiming to deliver 3D artists with highly optimized mesh data that is easy
to modify. In this context, the challenging problem is to create representations that are very similar to those an
artist would generate by hand. This includes, for example, highly adaptive quad meshes with varying scale of
quads in order to match the amount of detail within each region of the surface, as well as the alignment of vertex
positions with respective constraints for animation.

147

8. Future Work

148

A Publications and Talks

The thesis is partially based on the following publications and talks:

A.1. Publications

1. Box Cutter: Efficient Atlas Refinement via Void Elimination. M. Limper, N. Vining and A. Sheffer, Proc.
SIGGRAPH 2018 (to appear) [LVS18].

2. Mesh Topology Analysis using the Euler Characteristic. M. Limper, Blog Post, http://max-limper.
de/publications/Euler/ [Lim18].

3. 3D In Every-Day Life: Four Reasons Why It Didn’t Work Earlier (And Why It Could Work Now). M.
Limper, Blog Post, http://max-limper.de/publications/Every-Day-3D/ [Lim17].

4. A Unified GLTF/X3D Extension to Bring Physically-based Rendering to the Web. T. Sturm, M. Sousa, M.
Thöner and M. Limper, Proc. ACM Web3D, 2016 [SSTL16].

5. Mesh Saliency via Local Curvature Entropy. M. Limper, A. Kuijper and D. Fellner, Proc. Eurographics
2016 (Short Papers) [LKF16].

6. Evaluating 3D Thumbnails for Virtual Object Galleries. M. Limper, F. Brandherm, D. Fellner and A.
Kuijper, Proc. Web3D, 2015 [LBFK15].

7. Web-Based Delivery of 3D Mesh Data for Real-World Visual Computing Applications. M. Limper, J. Behr
and D. Fellner, In: Digital Representations of the Real World: How to Capture, Model, and Render Visual
Reality, M.Magnor, O. Grau, O. Sorkine-Hornung, C. Theobalt (Editors), 2015 [LBF15].

8. SRC - a Streamable Format for Generalized Web-based 3D Data Transmission. M. Limper, M. Thöner, J.
Behr and D. Fellner, Proc. ACM Web3D, 2014 [LTBF14].

9. The POP Buffer: Rapid Progressive Clustering by Geometry Quantization. M. Limper, Y. Jung, J. Behr
and M. Alexa, Proc. Pacific Graphics 2013 [LJBA13].

10. Fast Delivery of 3D Web Content: a Case Study. M. Limper, S. Wagner, C. Stein, Y. Jung and A. Stork,
Proc. ACM Web3D, 2013 [LWS∗13].

11. Fast and Efficient Vertex Data Representations for the Web. Y. Jung, M. Limper, P.Herzig, K. Schwenk and
J. Behr, Proc. IVAPP 2013 [JLH∗13].

149

http://max-limper.de/publications/Euler/
http://max-limper.de/publications/Euler/
http://max-limper.de/publications/Every-Day-3D/

A. Publications and Talks

12. Fast, Progressive Loading of Binary-Encoded Declarative-3D Web content. M. Limper, Y. Jung, J. Behr, T.
Sturm, T. Franke, K. Schwenk and A. Kuijper, IEEE Computer Graphics and Applications, Vol. 33, Issue
5, Sept.-Oct. 2013 [LJB∗13].

150

A.2. Talks

A.2. Talks

1. glTF 2.0 Export in InstantUV. M. Limper, SIGGRAPH 2017 glTF BOF, August 3, 2017

2. The Pug. A Comprehensive Excursion on its Roles and Perception with an Emphasis on German Culture.
M. Limper, The Un-Distinguished Lecture Series (UDLS), Vancouver, March 17, 2017

3. PBR-ready glTF in instant3Dhub / instantUV. M. Limper, GDC 2017 Khronos WebGL/WebVR/glTF
Meetup, March 2, 2017

4. Physically Based Materials in glTF - Current State. M. Limper and T. Sturm, SIGGRAPH 2016 WebGL
& glTF BOF, July 27, 2016

5. Fully-Automatic Creation of Compact, Textured 3D Mesh Representations. M. Limper, Eurographics 2016
Doctoral Consortium Presentation, May 9, 2016

6. X3DOM: Instant 3D, the HTML Way. M. Limper and J. Behr, WebGL Meetup by the Khronos Group,
Milano Chapter, December 17, 2015

7. High-Performance Visualization of Massive CAD Data with WebGL. M. Limper, C. Stein, J. Behr and M.
Thöner, SIGGRAPH 2015 WebGL BOF, August 12, 2015

151

A. Publications and Talks

152

B Supervising Activities

The following list summarizes the student bachelor, diploma and master thesis supervised by the author. The
results of works marked with an asterisk (*) were partially used as an input for this thesis. Results of other
works were primarily used to support projects at the Visual Computing System Technologies (VCST) group at
Fraunhofer IGD.

B.1. Master Thesis

1. Effiziente und Vollautomatische Grobausrichtung für den Soll-Ist-Abgleich zwischen CAD-Modellen und
Scandaten. Master Thesis by Sarah Berkei, TU Darmstadt (Primary Supervisor: Arjan Kuijper), 2016

2. Spatial Data Structures for Efficient Visualization of Massive 3D Models on the Web. Master Thesis by
Christian Stein, TU Darmstadt (Primary Supervisor: Arjan Kuijper), 2013

3. Hochperformante Szenengraphentraversierung in webbasierten Umgebungen zur Bildgenerierung. Mas-
ter Thesis by David Maushagen, Hochschule Emden / Leer (Primary Supervisor: Jörg Thomaschewski),
2013

B.2. Bachelor Thesis

1. Robust And Efficient Bijective Parameterization. Bachelor Thesis by Morris Hafner, TU Darmstadt (Pri-
mary Supervisor: Arjan Kuijper), 2017*

2. Automatic Appearance-Preserving Generation of Compact 3D Models For The Web. Bachelor Thesis by
Florian Brandherm, TU Darmstadt (Primary Supervisor: Arjan Kuijper), 2014*

3. Intuitive Platzierung von Objekten in webbasierten CAD-Umgebungen. Bachelor Thesis by Andres Felipe
Kordek, TU Darmstadt (Primary Supervisor: Arjan Kuijper), 2013

153

B. Supervising Activities

154

C Curriculum Vitae

Personal Data
Name Max Alfons Limper

Birth date & place November 17, 1985, Aachen

Nationality German

Education
2017 Visiting PhD student, University of British Columbia, Vancouver, BC, Canada

2012 – Present PhD student, Interactive Graphics Systems Group, Technische Universität Darmstadt, Ger-
many

2012 Diploma in Computer Science (Dipl.-Inform.), Siegen University, Germany

2007 – 2012 Studying Computer Science (Angewandte Informatik), Siegen University, Germany

2006 – 2007 Studying to Become a Teacher (Lehramt), Subjects: Computer Science, History and Music,
Siegen University, Germany

2005 – 2006 Studying Engineering and Economics (Wirtschaftsingenieurwesen), RWTH Aachen Univer-
sity, Germany

2005 Abitur, Ev. Gymnasium Siegen-Weidenau, Siegen, Germany

Work Experience
2017 – 2018 Researcher and Project Lead (part-time), Fraunhofer IGD, Darmstadt, Germany

2016 – 2017 Deputy Head of VCST Department, Fraunhofer IGD, Darmstadt, Germany

2013 – Present Researcher, Fraunhofer IGD, Darmstadt, Germany

2010 – 2011 Research Internship, Siemens Corporate Research, Princeton, NJ, USA

155

C. Curriculum Vitae

2007 – 2011 Teaching Assistant / Student Assistant, Institute for Computer Graphics and Multimedia
Systems, Siegen University, Germany

2008 – 2009 Teaching Assistant, Institute for Operating Systems and Distributed Systems, Siegen Uni-
versity, Germany

156

Bibliography
[AD01] ALLIEZ P., DESBRUN M.: Progressive compression for lossless transmission of triangle meshes.

In Proc. SIGGRAPH (2001), pp. 195–202. 63, 121, 129

[AG03] ALLIEZ P., GOTSMAN C.: Recent advances in compression of 3D meshes. In In Advances in
Multiresolution for Geometric Modelling (2003), pp. 3–26. 61

[Aka12] AKAMAI TECHNOLOGIES: The State of the Internet. Tech. rep., 2012. 3rd quarter 2012, Executive
Summary. 86

[Aka17] AKAMAI TECHNOLOGIES: The State of the Internet. Tech. rep., 2017. 1st quarter 2017, Executive
Summary. 86

[ALAK11] AHN J.-K., LEE D.-Y., AHN M., KIM C.-S.: R-d optimized progressive compression of 3d
meshes using prioritized gate selection and curvature prediction. Vis. Comput. (2011), 769–779.
112

[AMB∗17] AGUS M., MARTON F., BETTIO F., HADWIGER M., GOBBETTI E.: Data-driven analysis of
virtual 3d exploration of a large sculpture collection in real-world museum exhibitions. J. Comput.
Cult. Herit. 11, 1 (Dec. 2017), 2:1–2:20. 23, 24

[BCE∗13] BOMMES D., CAMPEN M., EBKE H.-C., ALLIEZ P., KOBBELT L.: Integer-grid maps for reliable
quad meshing. ACM Trans. Graph. 32, 4 (July 2013), 98:1–98:12. 33, 39, 49

[BCG05] BEN-CHEN M., GOTSMAN C.: On the optimality of spectral compression of mesh data. ACM
Trans. Graph. 24, 1 (2005), 60–80. 62, 112

[BCGB08] BEN-CHEN M., GOTSMAN C., BUNIN G.: Conformal flattening by curvature prescription and
metric scaling. Computer Graphics Forum 27, 2 (2008), 449–458. 31, 33

[BCW17] BRIGHT A., CHIEN E., WEBER O.: Harmonic global parametrization with rational holonomy.
ACM Trans. Graph. 36, 4 (July 2017), 89:1–89:15. 39, 49

[BEJZ09] BEHR J., ESCHLER P., JUNG Y., ZÖLLNER M.: X3dom: A dom-based html5/x3d integration
model. In Proceedings of the 14th International Conference on 3D Web Technology (New York,
NY, USA, 2009), Web3D ’09, ACM, pp. 127–135. 64, 70, 89

[BFH05] BERNDT R., FELLNER D. W., HAVEMANN S.: Generative 3d models: A key to more information
within less bandwidth at higher quality. In Proceedings of the Tenth International Conference on
3D Web Technology (New York, NY, USA, 2005), Web3D ’05, ACM, pp. 111–121. 103

[BGK03] BORODIN P., GUTHE M., KLEIN R.: Out-of-core simplification with guaranteed error tolerance.
In Vision, Modeling and Visualisation 2003 (Nov. 2003), Ertl T., Girod B., Greiner G., Niemann H.,
Seidel H.-P., Steinbach E., Westermann R., (Eds.), Akademische Verlagsgesellschaft Aka GmbH,
Berlin, pp. 309–316. 15

157

Bibliography

[BJFS12a] BEHR J., JUNG Y., FRANKE T., STURM T.: Using images and explicit binary container for
efficient and incremental delivery of declarative 3d scenes on the web. In Proceedings of the 17th
International Conference on 3D Web Technology (New York, NY, USA, 2012), Web3D ’12, ACM,
pp. 17–25. 7, 64, 65, 75, 82, 89, 113, 114, 116, 133

[BJFS12b] BEHR J., JUNG Y., FRANKE T., STURM T.: Using images and explicit binary container for
efficient and incremental delivery of declarative 3D scenes on the web. In Proc. Web3D (2012),
pp. 17–25. 81, 101, 121

[BKP∗10] BOTSCH M., KOBBELT L., PAULY M., ALLIEZ P., LEVY B.: Polygon Mesh Processing. AK
Peters, 2010. 5, 18

[BL08] BURLEY B., LACEWELL D.: Ptex: Per-face texture mapping for production rendering. In Euro-
graphics Symposium on Rendering 2008 (2008), pp. 1155–1164. 27

[Bli77] BLINN J. F.: Models of light reflection for computer synthesized pictures. In Proceedings of the
4th Annual Conference on Computer Graphics and Interactive Techniques (New York, NY, USA,
1977), SIGGRAPH ’77, ACM, pp. 192–198. 67

[Bra14] BRANDHERM F.: Automatic appearance-preserving generation of compact 3d models for the web.
Bachelor’s Thesis, TU Darmstadt, 2014. 27, 143

[BSBK02] BOTSCH M., STEINBERG S., BISCHOFF S., KOBBELT L.: OpenMesh: A Generic and Efficient
Polygon Mesh Data Structure. In OpenSG Symposium 2002 (2002). 20

[BZK09] BOMMES D., ZIMMER H., KOBBELT L.: Mixed-integer quadrangulation. ACM Trans. Graph.
28, 3 (July 2009), 77:1–77:10. 33

[CDE∗14] CIGOLLE Z. H., DONOW S., EVANGELAKOS D., MARA M., MCGUIRE M., MEYER Q.: A
survey of efficient representations for independent unit vectors. Journal of Computer Graphics
Techniques (JCGT) 3, 2 (April 2014), 1–30. 62

[CFN∗15] COZZI P., FILI T., NINOMIYA K., LIMPER M., THÖNER M.: glTF 1.0 extension specifica-
tion KHR_binary_glTF. https://github.com/KhronosGroup/glTF/tree/master/
extensions/1.0/Khronos/KHR_binary_glTF, 2015. 66, 102

[CH02] CARR N. A., HART J. C.: Meshed atlases for real-time procedural solid texturing. ACM Trans.
Graph. 21, 2 (Apr. 2002), 106–131. 29

[Cho97] CHOW M. M.: Optimized geometry compression for real-time rendering. In Proc. VIS (1997),
pp. 347–354. 112, 114

[Chu12a] CHUN W.: WebGL models: End-to-end. In OpenGL Insights. CRC Press, 2012, pp. 431–454. 62,
64, 82, 121

[Chu12b] CHUN W.: WebGL models: End-to-end. In OpenGL Insights, Cozzi P., Riccio C., (Eds.). CRC
Press, July 2012, pp. 431–454. 118

[CK12] CHIANG P.-Y., KUO C.-C. J.: Voxel-based shape decomposition for feature-preserving 3d thumb-
nail creation. J. Vis. Comun. Image Represent. 23, 1 (Jan. 2012), 1–11. 71

[CKK10] CHIANG P.-Y., KUO M.-C., KUO C.-C.: Feature-preserving 3d thumbnail creation with voxel-
based two-phase decomposition. In Advances in Visual Computing, Bebis G., Boyle R., Parvin
B., Koracin D., Chung R., Hammoud R., Hussain M., Kar-Han T., Crawfis R., Thalmann D., Kao

158

https://github.com/KhronosGroup/glTF/tree/master/extensions/1.0/Khronos/KHR_binary_glTF
https://github.com/KhronosGroup/glTF/tree/master/extensions/1.0/Khronos/KHR_binary_glTF

Bibliography

D., Avila L., (Eds.), vol. 6453 of Lecture Notes in Computer Science. Springer Berlin Heidelberg,
2010, pp. 108–119. 71

[CMR∗99] CIGNONI P., MONTANI C., ROCCHINI C., SCOPIGNO R., TARINI M.: Preserving attribute values
on simplified meshes by resampling detail textures. 519–539. 35

[COM98] COHEN J., OLANO M., MANOCHA D.: Appearance-preserving simplification. In Proceedings
of the 25th Annual Conference on Computer Graphics and Interactive Techniques (New York, NY,
USA, 1998), SIGGRAPH ’98, ACM, pp. 115–122. 35, 78

[CRMS03] CIGNONI P., ROCCHINI C., MONTANI C., SCOPIGNO R.: External memory management and
simplification of huge meshes, oct 2003. 15

[CSAD04] COHEN-STEINER D., ALLIEZ P., DESBRUN M.: Variational shape approximation. In ACM
SIGGRAPH 2004 Papers (New York, NY, USA, 2004), SIGGRAPH ’04, ACM, pp. 905–914. 12,
15, 42

[CT82] COOK R. L., TORRANCE K. E.: A reflectance model for computer graphics. ACM Trans. Graph.
1, 1 (Jan. 1982), 7–24. 67

[CVDL16] CAILLAUD F., VIDAL V., DUPONT F., LAVOUÉ G.: Progressive compression of arbitrary textured
meshes. In Proceedings of the 24th Pacific Conference on Computer Graphics and Applications
(Goslar Germany, Germany, 2016), PG ’16, Eurographics Association, pp. 475–484. 63

[CZL∗15] CHEN X., ZHANG H., LIN J., HU R., LU L., HUANG Q., BENES B., COHEN-OR D., CHEN
B.: Dapper: Decompose-and-pack for 3d printing. ACM Trans. Graph. 34, 6 (Oct. 2015), 213:1–
213:12. 41, 49, 53, 54

[DCG12] DUTAGACI H., CHEUNG C., GODIL A.: Evaluation of 3d interest point detection techniques via
human-generated ground truth. The Visual Computer 28, 9 (2012), 901–917. 15

[Dee95] DEERING M.: Geometry compression. In Proc. SIGGRAPH (1995), pp. 13–20. 61, 62, 112, 114

[DFW13] DEY T. K., FAN F., WANG Y.: An efficient computation of handle and tunnel loops via reeb
graphs. ACM Trans. Graph. 32, 4 (July 2013), 32:1–32:10. 28

[DMK03] DEGENER P., MESETH J., KLEIN R.: An adaptable surface parametrization method. In The 12th
International Meshing Roundtable 2003 (Sept. 2003). 33

[DSR∗13] DOBOŠ J., SONS K., RUBINSTEIN D., SLUSALLEK P., STEED A.: Xml3drepo: A rest api for
version controlled 3d assets on the web. In Proceedings of the 18th International Conference on
3D Web Technology (New York, NY, USA, 2013), Web3D ’13, ACM, pp. 47–55. 72

[DT07] DECORO C., TATARCHUK N.: Real-time mesh simplification using the GPU. In Symposium on
Interactive 3D Graphics (I3D) (Apr. 2007), vol. 2007, p. 6. 12, 113

[EHP02] ERICKSON J., HAR-PELED S.: Optimally cutting a surface into a disk. In Proceedings of the
Eighteenth Annual Symposium on Computational Geometry (New York, NY, USA, 2002), SCG
’02, ACM, pp. 244–253. 28

[FCOIZ01] FOGEL E., COHEN-OR D., IRONI R., ZVI T.: A web architecture for progressive delivery of 3D
content. In Proc. Web3D (2001), pp. 35–41. 63

[For06] FORSYTH T.: Linear-speed vertex cache optimisation, 2006. http://home.comcast.net/
~tom_forsyth/papers/fast_vert_cache_opt.html/. 82

159

http://home.comcast.net/~tom_forsyth/papers/fast_vert_cache_opt.html/
http://home.comcast.net/~tom_forsyth/papers/fast_vert_cache_opt.html/

Bibliography

[Fra15] FRANKE T. A.: The Delta Radiance Field. PhD thesis, Technische Universität, Darmstadt, July
2015. 67

[FSG09] FEIXAS M., SBERT M., GONZÁLEZ F.: A unified information-theoretic framework for viewpoint
selection and mesh saliency. ACM Trans. Appl. Percept. 6, 1 (Feb. 2009), 1:1–1:23. 15

[Gee09] GEELNARD M.: Open compressed triangle mesh (openctm) format, 2009. http://openctm.
sourceforge.net/. 66, 82

[GGH02] GU X., GORTLER S. J., HOPPE H.: Geometry images. In Proceedings of the 29th Annual Confer-
ence on Computer Graphics and Interactive Techniques (New York, NY, USA, 2002), SIGGRAPH
’02, ACM, pp. 355–361. 113

[GH97] GARLAND M., HECKBERT P. S.: Surface simplification using quadric error metrics. In Proceed-
ings of the 24th Annual Conference on Computer Graphics and Interactive Techniques (New York,
NY, USA, 1997), SIGGRAPH ’97, ACM Press/Addison-Wesley Publishing Co., pp. 209–216. 13,
20, 21, 24, 73, 126

[GH98a] GARLAND M., HECKBERT P. S.: Simplifying surfaces with color and texture using quadric error
metrics. In Proceedings of the Conference on Visualization ’98 (Los Alamitos, CA, USA, 1998),
VIS ’98, IEEE Computer Society Press, pp. 263–269. 13

[GH98b] GARLAND M., HECKBERT P. S.: Simplifying surfaces with color and texture using quadric error
metrics. In Proceedings of the Conference on Visualization ’98 (Los Alamitos, CA, USA, 1998),
VIS ’98, IEEE Computer Society Press, pp. 263–269. 13, 16

[GMR∗12] GOBBETTI E., MARTON F., RODRIGUEZ M. B., GANOVELLI F., DI BENEDETTO M.: Adap-
tive quad patches: an adaptive regular structure for web distribution and adaptive rendering of 3D
models. In Proc. Web3D (2012), pp. 9–16. 64

[GP09] GONZÁLEZ F., PATOW G.: Continuity mapping for multi-chart textures. ACM Trans. Graph. 28,
5 (2009), 109:1–109:8. 30, 49

[HG97] HAKURA Z. S., GUPTA A.: The design and analysis of a cache architecture for texture mapping.
In Proceedings of the 24th Annual International Symposium on Computer Architecture (New York,
NY, USA, 1997), ISCA ’97, ACM, pp. 108–120. 29

[HHM∗17] HAEHN D., HOFFER J., MATEJEK B., SUISSA-PELEG A., AL-AWAMI A. K., KAMENTSKY L.,
GONDA F., MENG E., ZHANG W., SCHALEK R., WILSON A., PARAG T., BEYER J., KAYNIG V.,
JONES T. R., TOMPKIN J., HADWIGER M., LICHTMAN J. W., PFISTER H.: Scalable interactive
visualization for connectomics. Informatics 4, 3 (2017). 132

[HLS07] HORMANN K., LÉVY B., SHEFFER A.: Mesh parameterization: Theory and practice. In ACM
SIGGRAPH Course Notes (2007). 31

[Hop96] HOPPE H.: Progressive meshes. In Proc. SIGGRAPH (1996), pp. 99–108. 63, 112, 119

[Hop98] HOPPE H.: Efficient implementation of progressive meshes. Computers & Graphics (1998), 27–
36. 63, 121

[HSH09] HU L., SANDER P. V., HOPPE H.: Parallel view-dependent refinement of progressive meshes. In
Proc. I3D (2009), pp. 169–176. 112, 127

160

http://openctm.sourceforge.net/
http://openctm.sourceforge.net/

Bibliography

[HV01] HAO X., VARSHNEY A.: Variable-precision rendering. In Proc. I3D (2001), pp. 149–158. 112,
125

[IKN98] ITTI L., KOCH C., NIEBUR E.: A model of saliency-based visual attention for rapid scene analysis.
TPAMI 20, 11 (Nov 1998), 1254–1259. 15

[IL05] ISENBURG M., LINDSTROM P.: Streaming meshes. In Proc. VIS (2005), pp. 231–238. 90, 96, 128

[JDBW12] JUNG Y., DREVENSEK T., BEHR J., WAGNER S.: Declarative 3d approaches for distributed web-
based scientific visualization services. In Proc. International Workshop on Declarative 3D for the
Web Architecture (Dec3D) (2012). 72

[JKS05] JULIUS D., KRAEVOY V., SHEFFER A.: D-charts: Quasi-developable mesh segmentation. Com-
puter Graphics Forum 24, 3 (2005), 581–590. 30, 42, 143

[JLH∗13] JUNG Y., LIMPER M., HERZIG P., SCHWENK K., BEHR J.: Fast and efficient vertex data repre-
sentations for the web. In GRAPP/IVAPP (2013), pp. 601–606. 6, 118, 149

[JPP08] JOVANOVA B., PREDA M., PRETEUX F.: MPEG4 Part 25: A Generic Model for 3D Graphics
Compression. In Proc. 3DTV-CON (2008), pp. 101–104. 65, 112

[JSP17] JIANG Z., SCHAEFER S., PANOZZO D.: Simplicial complex augmentation framework for bijective
maps. ACM Trans. Graph. 36, 6 (2017), 186:1–186:9. 34, 49, 143

[JWYG04] JIN M., WANG Y., YAU S. T., GU X.: Optimal global conformal surface parameterization. In
IEEE Visualization 2004 (Oct 2004), pp. 267–274. 33

[Kar13] KARIS B.: Real shading in unreal engine 4. In ACM SIGGRAPH 2013 Courses (2013), SIG-
GRAPH ’13. 67

[KDCM16] KOULIERIS G.-A., DRETTAKIS G., CUNNINGHAM D., MANIA K.: Gaze prediction using ma-
chine learning for dynamic stereo manipulation in games. In Proceedings of the IEEE Virtual
Reality Conference (March 2016), IEEE. 23, 24

[KG00] KARNI Z., GOTSMAN C.: Spectral compression of mesh geometry. In Proceedings of the 27th An-
nual Conference on Computer Graphics and Interactive Techniques (New York, NY, USA, 2000),
SIGGRAPH ’00, ACM Press/Addison-Wesley Publishing Co., pp. 279–286. 62

[KHLM17] KOO B., HERGEL J., LEFEBVRE S., MITRA N. J.: Towards zero-waste furniture design. IEEE
Transactions on Visualization and Computer Graphics 23, 12 (Dec 2017), 2627–2640. 41

[Kil08] KILGARD M. J.: Modern opengl usage: Using vertex buffer objects well. In SIGGRAPH ASIA
courses (Contributed Chapter) (2008), pp. 13:1–13:31. 130

[KL70] KERNIGHAN B. W., LIN S.: An efficient heuristic procedure for partitioning graphs. The Bell
System Technical Journal 49, 2 (Feb 1970), 291–307. 37

[KLB∗15] KEUPER M., LEVINKOV E., BONNEEL N., LAVOUE G., BROX T., ANDRES B.: Efficient de-
composition of image and mesh graphs by lifted multicuts. In The IEEE International Conference
on Computer Vision (ICCV) (December 2015). 37

[KRS∗13] KLEIN F., RUBINSTEIN D., SONS K., EINABADI F., HERHUT S., SLUSALLEK P.: Declara-
tive AR and Image Processing on the Web with Xflow. In Proceedings of the 18th International
Conference on Web 3D Technology (2013). 89, 99

161

Bibliography

[KSS00] KHODAKOVSKY A., SCHRÖDER P., SWELDENS W.: Progressive geometry compression. In Proc.
SIGGRAPH (2000), pp. 271–278. 63

[KSS06] KHAREVYCH L., SPRINGBORN B., SCHRÖDER P.: Discrete conformal mappings via circle pat-
terns. ACM Trans. Graph. 25, 2 (Apr. 2006), 412–438. 31, 33

[LBF15] LIMPER M., BEHR J., FELLNER D. W.: Web-based delivery of 3d mesh data for real-world visual
computing applications. In Digital Representations of the Real World: How to Capture, Model,
and Render Visual Reality, Magnor M., Grau O., Sorkine-Hornung O., Theobalt C., (Eds.). CRC
Press, Apr. 2015, pp. 333–345. 3, 6, 8, 71, 149

[LBFK15] LIMPER M., BRANDHERM F., FELLNER D. W., KUIJPER A.: Evaluating 3d thumbnails for
virtual object galleries. In Proceedings of the 20th International Conference on 3D Web Technology
(New York, NY, USA, 2015), Web3D ’15, ACM, pp. 17–24. 6, 8, 27, 72, 73, 76, 77, 78, 79, 149

[LCD13] LAVOUÉ G., CHEVALIER L., DUPONT F.: Streaming compressed 3D data on the web using
JavaScript and WebGL. In Proc. Web3D (2013), pp. 19–28. 91, 111, 121

[LCD14] LAVOUÉ G., CHEVALIER L., DUPONT F.: Progressive streaming of compressed 3d graphics in
a web browser. In ACM SIGGRAPH 2014 Talks (New York, NY, USA, 2014), SIGGRAPH ’14,
ACM, pp. 43:1–43:1. 111

[LCL10] LEE J., CHOE S., LEE S.: Mesh geometry compression for mobile graphics. In Proc. CCNC
(2010), pp. 301–305. 65, 82, 93, 118, 121, 127, 129

[LCSL18] LAVOUÉ G., CORDIER F., SEO H., LARABI M.-C.: Visual attention for rendered 3d shapes.
Computer Graphics Forum (Proc. Eurographics 2018, to appear) 37, 2 (2018). 23, 24

[LE97] LUEBKE D., ERIKSON C.: View-dependent simplification of arbitrary polygonal environments.
In Proc. SIGGRAPH (1997), pp. 199–208. 113

[LFJG17] LIU S., FERGUSON Z., JACOBSON A., GINGOLD Y.: Seamless: Seam erasure and seam-aware
decoupling of shape from mesh resolution. ACM Transactions on Graphics (TOG) 36, 6 (Nov.
2017), 216:1–216:15. 29

[LHDE15] LIPSKI C., HILSMANN A., DACHSBACHER C., EISEMANN M.: Image- and video-based ren-
dering. In Digital Representations of the Real World: How to Capture, Model, and Render Visual
Reality, Magnor M. A., Grau O., Sorkine-Hornung O., Theobalt C., (Eds.). CRC Press, May 2015,
pp. 261–280. 59

[Lim17] LIMPER M.: 3d in every-day life: Four reasons why it didn’t work earlier (and why it could work
now). http://max-limper.de/publications/Every-Day-3D/, 2017. 1, 2, 149

[Lim18] LIMPER M.: Mesh topology analysis using the euler characteristic. http://max-limper.
de/publications/Euler/, 2018. 13, 28, 149

[Lin00] LINDSTROM P.: Out-of-core simplification of large polygonal models. In Proceedings of the
27th Annual Conference on Computer Graphics and Interactive Techniques (New York, NY, USA,
2000), SIGGRAPH ’00, ACM Press/Addison-Wesley Publishing Co., pp. 259–262. 12, 15, 24, 113

[Lip12] LIPMAN Y.: Bounded distortion mapping spaces for triangular meshes. ACM Trans. Graph. 31, 4
(July 2012), 108:1–108:13. 38, 39, 40, 49

162

http://max-limper.de/publications/Every-Day-3D/
http://max-limper.de/publications/Euler/
http://max-limper.de/publications/Euler/

Bibliography

[LJB∗13] LIMPER M., JUNG Y., BEHR J., STURM T., FRANKE T., SCHWENK K., KUIJPER A.: Fast,
progressive loading of binary-encoded declarative-3d web content. IEEE Computer Graphics and
Applications 33, 5 (Sept 2013), 26–36. 6, 7, 114, 115, 116, 117, 120, 150

[LJBA13] LIMPER M., JUNG Y., BEHR J., ALEXA M.: The POP buffer: Rapid progressive clustering by
geometry quantization. Computer Graphics Forum (Proc. Pacific Graphics 2013) 32, 7 (2013),
197–206. 6, 7, 121, 122, 123, 125, 126, 128, 129, 130, 131, 149

[LKF16] LIMPER M., KUIJPER A., FELLNER D. W.: Mesh Saliency Analysis via Local Curvature Entropy.
In EG 2016 - Short Papers (2016), Bashford-Rogers T., Santos L. P., (Eds.), The Eurographics
Association. 6, 8, 15, 16, 17, 18, 19, 21, 24, 149

[LLD12] LEE H., LAVOUÉ G., DUPONT F.: Rate-distortion optimization for progressive compression of
3d mesh with color attributes. Vis. Comput. (2012), 137–153. 63, 112

[LM15] LAVOUÉ G., MANTIUK R.: Quality Assessment in Computer Graphics. Springer International
Publishing, Cham, 2015, pp. 243–286. 80

[LPRM02] LÉVY B., PETITJEAN S., RAY N., MAILLOT J.: Least squares conformal maps for automatic
texture atlas generation. In Proceedings of the 29th Annual Conference on Computer Graphics and
Interactive Techniques (New York, NY, USA, 2002), SIGGRAPH ’02, ACM, pp. 362–371. 27, 30,
32, 34, 38, 39, 40, 48, 74

[LST12] LEIFMAN G., SHTROM E., TAL A.: Surface regions of interest for viewpoint selection. In Proc.
CVPR (June 2012), pp. 414–421. 15

[LSTT15] LIMPER M., SOUSA M., THÖNER M., TAGLANG R.: glTF 1.0 extension specification
WEB3D_quantized_attributes. https://github.com/KhronosGroup/glTF/tree/
master/extensions/1.0/Vendor/WEB3D_quantized_attributes, 2015. 65, 93,
102

[LT97] LOW K.-L., TAN T.-S.: Model simplification using vertex-clustering. In Proceedings of the 1997
Symposium on Interactive 3D Graphics (New York, NY, USA, 1997), I3D ’97, ACM, pp. 75–ff.
12, 113

[LT00] LINDSTROM P., TURK G.: Image-driven simplification. ACM Trans. Graph. 19, 3 (July 2000),
204–241. 13

[LTBF14] LIMPER M., THÖNER M., BEHR J., FELLNER D. W.: SRC - a streamable format for generalized
web-based 3d data transmission. In Proceedings of the Nineteenth International ACM Conference
on 3D Web Technologies (New York, NY, USA, 2014), Web3D ’14, ACM, pp. 35–43. 6, 7, 66, 81,
88, 89, 92, 95, 97, 99, 101, 102, 149

[LVJ05] LEE C. H., VARSHNEY A., JACOBS D. W.: Mesh saliency. In Proc. SIGGRAPH (2005), ACM,
pp. 659–666. 15, 17

[LVS18] LIMPER M., VINING N., SHEFFER A.: Box cutter: Efficient atlas refinement via void elimination
(to appear). In Proc. SIGGRAPH (2018). 6, 7, 8, 25, 33, 34, 35, 36, 38, 40, 41, 42, 43, 44, 45, 46,
47, 48, 51, 52, 54, 55, 56, 149

[LWC∗02] LUEBKE D., WATSON B., COHEN J. D., REDDY M., VARSHNEY A.: Level of Detail for 3D
Graphics. Elsevier Science Inc., New York, NY, USA, 2002. 12, 112

163

https://github.com/KhronosGroup/glTF/tree/master/extensions/1.0/Vendor/WEB3D_quantized_attributes
https://github.com/KhronosGroup/glTF/tree/master/extensions/1.0/Vendor/WEB3D_quantized_attributes

Bibliography

[LWS∗13] LIMPER M., WAGNER S., STEIN C., JUNG Y., STORK A.: Fast delivery of 3d web content: A
case study. In Proceedings of the 18th International Conference on 3D Web Technology (New York,
NY, USA, 2013), Web3D ’13, ACM, pp. 11–17. 6, 7, 81, 83, 85, 86, 116, 121, 129, 149

[Lys18] LYSENKO M.: A level of detail method for blocky voxels. https://0fps.net/2018/03/
03/a-level-of-detail-method-for-blocky-voxels/, 2018. 132

[LZ14] LEVI Z., ZORIN D.: Strict minimizers for geometric optimization. ACM Trans. Graph. 33, 6 (Nov.
2014), 185:1–185:14. 39, 49

[LZX∗08] LIU L., ZHANG L., XU Y., GOTSMAN C., GORTLER S. J.: A local/global approach to mesh pa-
rameterization. In Proceedings of the Symposium on Geometry Processing (Aire-la-Ville, Switzer-
land, Switzerland, 2008), SGP ’08, Eurographics Association, pp. 1495–1504. 33, 143

[MCAH12] MAGLO A., COURBET C., ALLIEZ P., HUDELOT C.: Progressive compression of manifold
polygon meshes. Comput. Graph. (2012), 349–359. 63, 129

[MHH∗12] MCAULEY S., HILL S., HOFFMAN N., GOTANDA Y., SMITS B., BURLEY B., MARTINEZ A.:
Practical physically-based shading in film and game production. In ACM SIGGRAPH 2012 Courses
(New York, NY, USA, 2012), SIGGRAPH ’12, ACM, pp. 10:1–10:7. 67

[MLDH15] MAGLO A., LAVOUÉ G., DUPONT F., HUDELOT C.: 3d mesh compression: Survey, comparisons,
and emerging trends. ACM Comput. Surv. 47, 3 (Feb. 2015), 44:1–44:41. 61

[MLL∗10] MAGLO A., LEE H., LAVOUÉ G., MOUTON C., HUDELOT C., DUPONT F.: Remote scientific
visualization of progressive 3D meshes with X3D. In Proc. Web3D (2010), pp. 109–116. 63

[MPZ14] MYLES A., PIETRONI N., ZORIN D.: Robust field-aligned global parametrization. ACM Trans.
Graph. 33, 4 (July 2014), 135:1–135:14. 39, 49

[MSGS11] MEYER Q., SUSSNER G., GREINER G., STAMMINGER M.: Adaptive level-of-precision for gpu-
rendering. In Proc. VMV (2011), pp. 169–176. 112, 124, 127

[MYV93] MAILLOT J., YAHIA H., VERROUST A.: Interactive texture mapping. In Proceedings of the
20th Annual Conference on Computer Graphics and Interactive Techniques (New York, NY, USA,
1993), SIGGRAPH ’93, ACM, pp. 27–34. 30

[MZ12] MYLES A., ZORIN D.: Global parametrization by incremental flattening. ACM Trans. Graph. 31,
4 (July 2012), 109:1–109:11. 33

[NS11] NÖLL T., STRICKER D.: Efficient packing of arbitrarily shaped charts for automatic texture atlas
generation. In Proceedings of the Twenty-second Eurographics Conference on Rendering (Aire-la-
Ville, Switzerland, Switzerland, 2011), EGSR ’11, Eurographics Association, pp. 1309–1317. 41,
48

[Par15] PARISI T.: glTF 1.0 extension specification KHR_materials_common. https://github.
com/KhronosGroup/glTF/tree/master/extensions/1.0/Khronos/KHR_
materials_common, 2015. 105

[PBCK05] PURNOMO B., BILODEAU J., COHEN J. D., KUMAR S.: Hardware-compatible vertex compres-
sion using quantization and simplification. In Proc. HWWS (2005), pp. 53–61. 112

164

https://0fps.net/2018/03/03/a-level-of-detail-method-for-blocky-voxels/
https://0fps.net/2018/03/03/a-level-of-detail-method-for-blocky-voxels/
https://github.com/KhronosGroup/glTF/tree/master/extensions/1.0/Khronos/KHR_materials_common
https://github.com/KhronosGroup/glTF/tree/master/extensions/1.0/Khronos/KHR_materials_common
https://github.com/KhronosGroup/glTF/tree/master/extensions/1.0/Khronos/KHR_materials_common

Bibliography

[PCK04] PURNOMO B., COHEN J. D., KUMAR S.: Seamless texture atlases. In Proceedings of the 2004
Eurographics/ACM SIGGRAPH Symposium on Geometry Processing (New York, NY, USA, 2004),
SGP ’04, ACM, pp. 65–74. 29

[PH97] POPOVIĆ J., HOPPE H.: Progressive simplicial complexes. In Proceedings of the 24th Annual
Conference on Computer Graphics and Interactive Techniques (New York, NY, USA, 1997), SIG-
GRAPH ’97, ACM Press/Addison-Wesley Publishing Co., pp. 217–224. 63

[PKJK05] PENG J., KIM C.-S., JAY KUO C. C.: Technologies for 3d mesh compression: A survey. J. Vis.
Comun. Image Represent. (2005), 688–733. 61, 63, 111, 112, 119

[PKS∗03] PAGE D., KOSCHAN A., SUKUMAR S., ROUI-ABIDI B., ABIDI M.: Shape analysis algorithm
based on information theory. In Proc. ICIP (Sept 2003), vol. 1, pp. I–229–32 vol.1. 15, 17, 18

[PLS08] POOL J., LASTRA A., SINGH M.: Energy-precision tradeoffs in mobile graphics processing units.
In ICCD (2008), IEEE, pp. 60–67. 112

[PR00] PAJAROLA R. B., ROSSIGNAC J.: Squeeze: Fast and progressive decompression of triangle
meshes. In Proc. CGI (2000), pp. 173–182. 60, 63, 121

[PTH∗17] PORANNE R., TARINI M., HUBER S., PANOZZO D., SORKINE-HORNUNG O.: Autocuts: Simul-
taneous distortion and cut optimization for uv mapping. ACM Trans. on Graphics - Siggraph Asia
2017 36, 6 (2017). 31, 34, 41, 49, 55

[RB92] ROSSIGNAC J., BORREL P.: Multi-resolution 3D approximations for rendering complex scenes.
Tech. rep., 1992. IBM Research Report RC 17697. 113, 126

[RB93] ROSSIGNAC J., BORREL P.: Multi-resolution 3D approximations for rendering complex scenes.
Springer Berlin Heidelberg, Berlin, Heidelberg, 1993, pp. 455–465. 12

[Ros99] ROSSIGNAC J.: Edgebreaker: Connectivity compression for triangle meshes. IEEE Transactions
on Visualization and Computer Graphics 5, 1 (Jan. 1999), 47–61. 62

[Ros01] ROSSIGNAC J.: 3d compression made simple: Edgebreaker with zip&wrap on a corner-table. In
Proceedings of the International Conference on Shape Modeling & Applications (Washington, DC,
USA, 2001), SMI ’01, IEEE Computer Society, pp. 278–. 62, 66

[RPC13] ROBINET F., PARISI T., COZZI P.: WebGL transmission format (gltf), 2013. https:
//github.com/KhronosGroup/collada2json/wiki/glTF. 116

[Say12] SAYOOD K.: Introduction to Data Compression. Morgan Kaufmann series in multimedia infor-
mation and systems. Morgan Kaufmann, 2012. 62

[SCOGL02] SORKINE O., COHEN-OR D., GOLDENTHAL R., LISCHINSKI D.: Bounded-distortion piecewise
mesh parameterization. In Proceedings of the Conference on Visualization ’02 (Washington, DC,
USA, 2002), VIS ’02, IEEE Computer Society, pp. 355–362. 33, 34

[SCOT03] SORKINE O., COHEN-OR D., TOLEDO S.: High-pass quantization for mesh encoding. In Pro-
ceedings of the 2003 Eurographics/ACM SIGGRAPH Symposium on Geometry Processing (Aire-
la-Ville, Switzerland, Switzerland, 2003), SGP ’03, Eurographics Association, pp. 42–51. 62

[SdS01] SHEFFER A., DE STURLER E.: Parameterization of faceted surfaces for meshing using angle-based
flattening. Engineering with Computers 17, 3 (Oct 2001), 326–337. 32, 34

165

https://github.com/KhronosGroup/collada2json/wiki/glTF
https://github.com/KhronosGroup/collada2json/wiki/glTF

Bibliography

[SG01] SHAFFER E., GARLAND M.: Efficient adaptive simplification of massive meshes. In Proceedings
of the Conference on Visualization ’01 (Washington, DC, USA, 2001), VIS ’01, IEEE Computer
Society, pp. 127–134. 15

[SGG∗00] SANDER P. V., GU X., GORTLER S. J., HOPPE H., SNYDER J.: Silhouette clipping. In Proceed-
ings of the 27th Annual Conference on Computer Graphics and Interactive Techniques (New York,
NY, USA, 2000), SIGGRAPH ’00, ACM Press/Addison-Wesley Publishing Co., pp. 327–334. 35,
74

[SGSH02] SANDER P. V., GORTLER S. J., SNYDER J., HOPPE H.: Signal-specialized parametrization. In
Proc. Eurographics Workshop on Rendering (2002), pp. 87–98. 33, 113

[SH02] SHEFFER A., HART J. C.: Seamster: Inconspicuous low-distortion texture seam layout. In Pro-
ceedings of the Conference on Visualization ’02 (Washington, DC, USA, 2002), VIS ’02, IEEE
Computer Society, pp. 291–298. 28, 31, 39, 40, 49, 143

[Sha48] SHANNON C. E.: A mathematical theory of communication. Bell System Technical Journal 27, 3
(1948), 379–423. 17

[SJBF10] SCHWENK K., JUNG Y., BEHR J., FELLNER D. W.: A modern declarative surface shader for x3d.
In Proceedings of the 15th International Conference on Web 3D Technology (New York, NY, USA,
2010), Web3D ’10, ACM, pp. 7–16. 70

[SJV∗12] SCHWENK K., JUNG Y., VOSSG., STURM T., BEHR J.: Commonsurfaceshader revisited: Im-
provements and experiences. In Proceedings of the 17th International Conference on 3D Web
Technology (New York, NY, USA, 2012), Web3D ’12, ACM, pp. 93–96. 70, 107

[SKR∗10] SONS K., KLEIN F., RUBINSTEIN D., BYELOZYOROV S., SLUSALLEK P.: XML3D: interactive
3D graphics for the web. In Proc. Web3D (2010), pp. 175–184. 64, 89

[SLMBy05] SHEFFER A., LÉVY B., MOGILNITSKY M., BOGOM YAKOV A.: Abf++ : Fast and robust angle
based flattening. ACM Transactions on Graphics (Apr 2005). 32, 33, 40, 49, 51, 143

[SLMR14] SONG R., LIU Y., MARTIN R. R., ROSIN P. L.: Mesh saliency via spectral processing. ACM
Trans. Graph. 33, 1 (Feb. 2014), 6:1–6:17. 15, 16, 17, 19, 20, 21

[SM05] SANDER P. V., MITCHELL J. L.: Progressive buffers: view-dependent geometry and texture lod
rendering. In Proc. SGP (2005), pp. 129–138. 112, 123, 127

[SNB07] SANDER P. V., NEHAB D., BARCZAK J.: Fast triangle reordering for vertex locality and reduced
overdraw. In Proc. SIGGRAPH (2007). 121, 130

[SPR06] SHEFFER A., PRAUN E., ROSE K.: Mesh parameterization methods and their applications. Found.
Trends. Comput. Graph. Vis. 2, 2 (Jan. 2006), 105–171. 31

[SS97] SCHMALSTIEG D., SCHAUFLER G.: Smooth levels of detail. In Proc. VRAIS (1997), pp. 12–19.
113, 127

[SS11] STOCKER H., SCHICKEL P.: X3D binary encoding results for free viewpoint networked distribu-
tion and synchronization. In Proc. Web3D (New York, NY, USA, 2011), ACM, pp. 67–70. 65

[SS15] SMITH J., SCHAEFER S.: Bijective parameterization with free boundaries. ACM Trans. Graph.
34, 4 (July 2015), 70:1–70:9. 32, 36

166

Bibliography

[SSGH01] SANDER P. V., SNYDER J., GORTLER S. J., HOPPE H.: Texture mapping progressive meshes.
In Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques
(New York, NY, USA, 2001), SIGGRAPH ’01, ACM, pp. 409–416. 30, 34, 113, 143

[SSHL97] SHIRLEY P., SMITS B. E., HU H. H., LAFORTUNE E. P.: A practitioners’ assessment of light
reflection models. In 5th Pacific Conference on Computer Graphics and Applications (PG ’97)
(1997), IEEE Computer Society, p. 40. 68

[SSS14] SUTTER J., SONS K., SLUSALLEK P.: Blast: A Binary Large Structured Transmission Format for
the Web. In Proceedings of the Nineteenth International ACM Conference on 3D Web Technologies
(2014), Web3D ’14, pp. 45–52. 65, 89, 101

[SSTL16] STURM T., SOUSA M., THÖNER M., LIMPER M.: A unified gltf/x3d extension to bring
physically-based rendering to the web. In Proceedings of the 21st International Conference on
Web3D Technology (New York, NY, USA, 2016), Web3D ’16, ACM, pp. 117–125. 67, 68, 104,
107, 108, 149

[Sva99] SVAROVSKY J.: Extreme detail graphics. In Proc. Game Developers Conference (1999), pp. 889–
904. 112, 127

[SWG∗03] SANDER P. V., WOOD Z. J., GORTLER S. J., SNYDER J., HOPPE H.: Multi-chart geometry
images. In Proceedings of the 2003 Eurographics/ACM SIGGRAPH Symposium on Geometry
Processing (Aire-la-Ville, Switzerland, Switzerland, 2003), SGP ’03, Eurographics Association,
pp. 146–155. 30, 34, 41, 48, 74, 113, 143

[TG98] TOUMA C., GOTSMAN C.: Triangle mesh compression. In Proceedings of the Graphics Interface
1998 Conference, June 18-20, 1998, Vancouver, BC, Canada (June 1998), pp. 26–34. 62, 83

[VCP09] VALETTE S., CHAINE R., PROST R.: Progressive lossless mesh compression via incremental
parametric refinement. In Proc. SGP (2009), pp. 1301–1310. 63

[Wag12] WAGNER S.: Effiziente Datenübertragung von Modellen und Texturen für die Verwendung in
WebGL. Diploma thesis, TU Dresden, Germany, 2012. 7

[WHDS04] WOOD Z., HOPPE H., DESBRUN M., SCHRÖDER P.: Removing excess topology from isosurfaces.
ACM Trans. Graph. 23, 2 (Apr. 2004), 190–208. 28

[Wil11a] WILLMOTT A.: Rapid simplification of multi-attribute meshes. In Proceedings of the ACM SIG-
GRAPH Symposium on High Performance Graphics (New York, NY, USA, 2011), HPG ’11, ACM,
pp. 151–158. 12, 112, 113, 126

[Wil11b] WILLMOTT A.: Rapid simplification of multi-attribute meshes. In Proc. HPG (2011), pp. 151–158.
126, 127

[WWA∗16] WEBER N., WAECHTER M., AMEND S. C., GUTHE S., GOESELE M.: Rapid, detail-preserving
image downscaling. ACM Trans. Graph. 35, 6 (Nov. 2016), 205:1–205:6. 11

[YKH10] YUKSEL C., KEYSER J., HOUSE D. H.: Mesh colors. ACM Transactions on Graphics 29, 2
(2010), 15:1–15:11. 27

[Yuk17] YUKSEL C.: Mesh color textures. In High-Performance Graphics (HPG 2017) (New York, NY,
USA, 2017), ACM. 27, 29

167

Bibliography

[ZG02] ZELINKA S., GARLAND M.: Permission grids: Practical, error-bounded simplification. ACM
Trans. Graph. 21, 2 (Apr. 2002), 207–229. 15

[ZSG∗17] ZHANG F., STAVA O., GALLIGAN F., NINOMIYA K., COZZI P.: glTF 2.0 extension speci-
fication KHR_draco_mesh_compression. https://github.com/KhronosGroup/glTF/
tree/master/extensions/2.0/Khronos/KHR_draco_mesh_compression, 2017.
66, 87

[ZSGS04] ZHOU K., SYNDER J., GUO B., SHUM H.-Y.: Iso-charts: Stretch-driven mesh parameterization
using spectral analysis. In Proceedings of the 2004 Eurographics/ACM SIGGRAPH Symposium on
Geometry Processing (New York, NY, USA, 2004), SGP ’04, ACM, pp. 45–54. 30, 41

168

https://github.com/KhronosGroup/glTF/tree/master/extensions/2.0/Khronos/KHR_draco_mesh_compression
https://github.com/KhronosGroup/glTF/tree/master/extensions/2.0/Khronos/KHR_draco_mesh_compression

